

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc62b-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1 PIC16C62B/PIC16C72A PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0 ⁽⁴⁾	2	2	I/O	TTL	RA0 can also be analog input 0
RA1/AN1 ⁽⁴⁾	3	3	I/O	TTL	RA1 can also be analog input 1
RA2/AN2 ⁽⁴⁾	4	4	I/O	TTL	RA2 can also be analog input 2
RA3/AN3/VREF ⁽⁴⁾	5	5	I/O	TTL	RA3 can also be analog input 3 or analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/SS/AN4 ⁽⁴⁾	7	7	I/O	TTL	RA5 can also be analog input 4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6	17	17	I/O	ST	
RC7	18	18	I/O	ST	
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.
Vdd	20	20	Р	—	Positive supply for logic and I/O pins.
Legend: I = input	O = outp — = Not		I/O =	input/output	P = power or program ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: The A/D module is not available on the PIC16C62B.

2.2.2.2 OPTION_REG REGISTER

Г

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit					
bit7							bit0	W = Writable bit					
	- n = Value at POR reset												
bit 7:	RBPU: PORTB Pull-up Enable bit												
		 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled for all PORTB inputs 											
	0 = PORTI	B pull-ups a	are enat	oled for all	PORTBing	outs							
bit 6:	INTEDG: I	nterrupt Ed	lge Sele	ct bit									
	1 = Interru	pt on rising	edge o	f RB0/INT	pin								
	0 = Interru	pt on falling	g edge o	f RB0/INT	- pin								
bit 5:	TOCS: TM	R0 Clock S	ource S	elect bit									
	1 = Transit	ion on RA4	/T0CKI	pin									
		al instruction		•	(OUT)								
bit 4:	TOSE: TMI		-	•	,								
Dit 4.					on RA4/T0	CKI nin							
		•			on RA4/T0	•							
hit 0.			•			o p							
bit 3:	PSA: Pres	•											
		tler is assig tler is assig			modulo								
		0			module								
bit 2-0:	PS2:PS0:	Prescaler F	Rate Sel	ect bits									
	Bit Value	TMR0 Rat	e WD	Г Rate									
	000	1:2	1:	1									
	001	1:4	1 :										
	010	1:8	1:										
	011	1:16	1:	-									
	100	1:32		16									
	101	1:64		32 64									
	110	1:128		64 128									
	111	1:256		120									

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register and is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly accessible. All updates to the PCH register go through the PCLATH register.

2.3.1 STACK

The stack allows any combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8 level deep hardware stack. The stack space is not part of either program or data space and the stack pointer is not accessible. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RET-FIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

2.4 Program Memory Paging

The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper bit of the address is provided by PCLATH<3>. The user must ensure that the page select bit is programmed to address the proper program memory page. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped from the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions.

TABLE 3-1 PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input ⁽¹⁾
RA1/AN1	bit1	TTL	Input/output or analog input ⁽¹⁾
RA2/AN2	bit2	TTL	Input/output or analog input ⁽¹⁾
RA3/AN3/VREF	bit3	TTL	Input/output or analog input ⁽¹⁾ or VREF ⁽¹⁾
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input ⁽¹⁾

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C62B does not implement the A/D module.

TABLE 3-2 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
05h	PORTA (for PIC16C72A only)	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
05h	PORTA (for PIC16C62B only)	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA			PORTA	PORTA Data Direction Register					11 1111	11 1111
9Fh	ADCON1 ⁽¹⁾						PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA. Note 1: The PIC16C62B does not implement the A/D module. Maintain this register clear.

5.2 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). When the Timer1 oscillator is enabled, RC0 and RC1 pins become T1OSO and T1OSI inputs, overriding TRISC<1:0>.

The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1	CAPACITOR SELECTION FOR
	THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2					
LP	32 kHz 33 pF 33 pF							
	100 kHz	15 pF	्रीई वृष्ट्रे					
	200 kHz	15 pF	(15°pF					
These v	alues are for (design guidar	ice only.					
Crystals Tes	sted:	<u>AN</u>						
32.768 kHz	Epson C-00	(R32.768K-A	\pm 20 PPM					
100 kHz	Epson C 21	00.00 KC-P	\pm 20 PPM					
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM					
of of time 2: Sinic cha reso								

5.3 <u>Timer1 Interrupt</u>

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled by setting TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.4 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u>

If the CCP module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The special event trigger from the CCP1
	module will not set interrupt flag bit
	TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

TABLE 5-2 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1		ADIF	-	-	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	_	ADIE	-	-	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
0Eh	TMR1L	Holding	g register	r for the Lea	st Significar	t Byte of the	16-bit TMF	R1 register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding	Holding register for the Most Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu
10h	T1CON	-	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM on-time by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-4 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

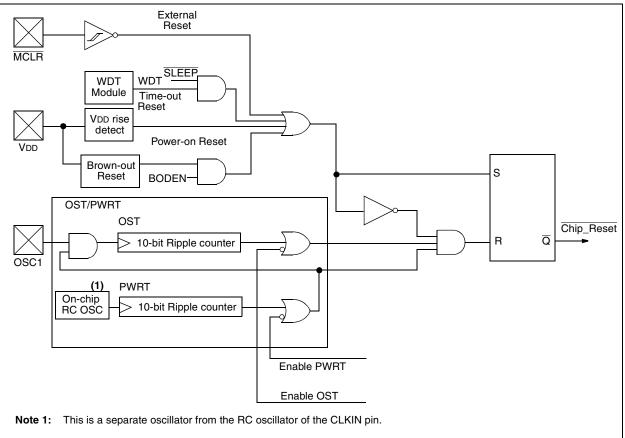
PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 7-5 REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
87h	TRISC	PORTC D	ata Directio	on Register						1111 1111	1111 1111
11h	TMR2	Timer2 mo	odule's regis	ter						0000 0000	0000 0000
92h	PR2	Timer2 mo	odule's perio	d register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	Capture/Compare/PWM register1 (LSB)							xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	Capture/Compare/PWM register1 (MSB)						xxxx xxxx	uuuu uuuu	
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

8.3.1.2 RECEPTION

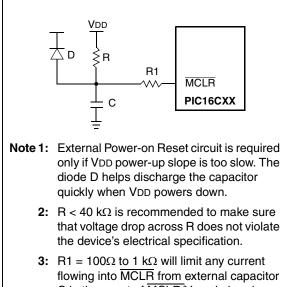

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 8-3: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W SDA - </th <th>=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE </th> <th></th> <th></th>	=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE 		
SSPI <u>F (PIR1<3>)</u> BF (<u>SSPSTAT<0>)</u>	 Cleared in software SSPBUF register is read 		Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u>	Bit SSPOV is set b	ecause the SSPBUF register is still f	


FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

10.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (SVDD, parameter D004). For a slow rise time, see Figure 10-6.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions.

FIGURE 10-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

R1 = 100Ω to 1 kΩ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

10.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (TPWRT, parameter #33) from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameters for details.

10.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (TOST, parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

Note: The OST delay may not occur when the device wakes from SLEEP.

10.7 Brown-Out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-Out Reset circuit. If VPP falls below Vbor (parameter #35, about 100μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a reset may not occur.

Once the brown-out occurs, the device will remain in brown-out reset until VDD rises above VBOR. The power-up timer then keeps the device in reset for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the brown-out reset process will restart when VDD rises above VBOR with the power-up timer reset. The power-up timer is always enabled when the brown-out reset circuit is enabled, regardless of the state of the PWRT configuration bit.

FIGURE 10-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; a1 a2 a3 a4 ; (osc1 /~//	21 Q2 Q3 Q4 ; \/		a1 a2 a3 a4	a1 a2 a3 a4	a1 a2 a3 a4	01 02 03 04
CLKOUT(4)		Tost(2)	/	/	//	
INTF flag (INTCON<1>)				Interrupt Latency (Note 2)	- 	
GIE bit (INTCON<7>)	 + 	Processor in SLEEP			1 1 1 1	
INSTRUCTION FLOW	1					· · · ·
PC <u>X PC X</u>	PC+1	PC+2	PC+2	X PC + 2	X 0004h	X 0005h
Instruction { fetched { Inst(PC) = SLEEP	Inst(PC + 1)	, , ,	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1)	SLEEP	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

10.14 Program Verification/Code Protection

If the code protection bits have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

10.16 In-Circuit Serial Programming™

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three more lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, DS30277.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', then the next instruction is executed. If bit 'b' in register 'f' is '0', then the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$00h \rightarrow WDT$ 0 $\rightarrow WDT$ prescaler, 1 $\rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow \overline{PD}$
Description:	Call Subroutine. First, return address	Status Affected:	TO, PD
	(PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.	Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

SUBLW	Subtract W from Literal
Syntax:	[label] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \text{ - } (W) \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's com- plement method) from the eight bit lit- eral 'k'. The result is placed in the W register.

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.

SUBWF	Subtract W from f	XORWF
Syntax:	[label] SUBWF f,d	Syntax:
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operan
Operation:	(f) - (W) \rightarrow (destination)	Operatio
Status	C, DC, Z	Status A
Affected:		Descrip
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	

XORWF	Exclusive OR W with f	
Syntax:	[<i>label</i>] XORWF f,d	
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$	
Operation:	(W) .XOR. (f) \rightarrow (destination)	
Status Affected:	Z	
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB™ IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

- The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:
- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

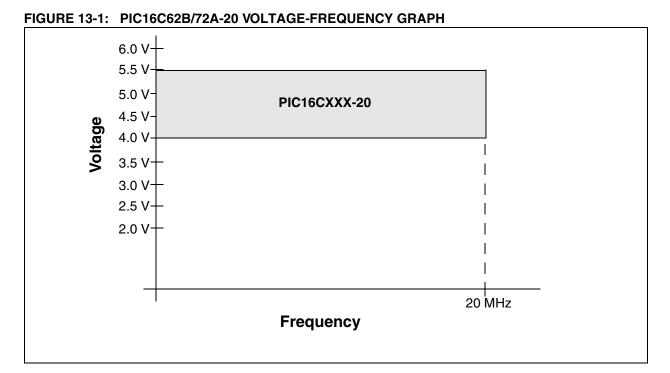
12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

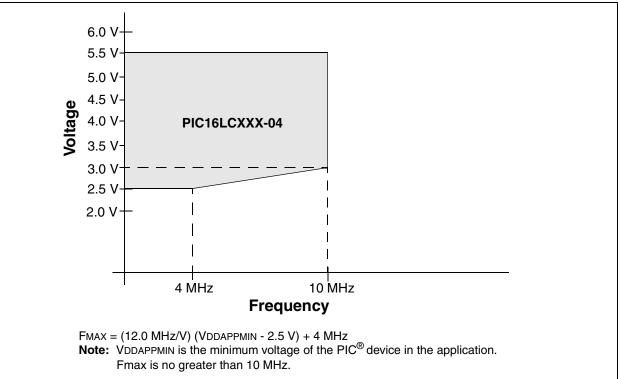
MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

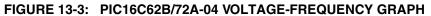
MPASM features include:

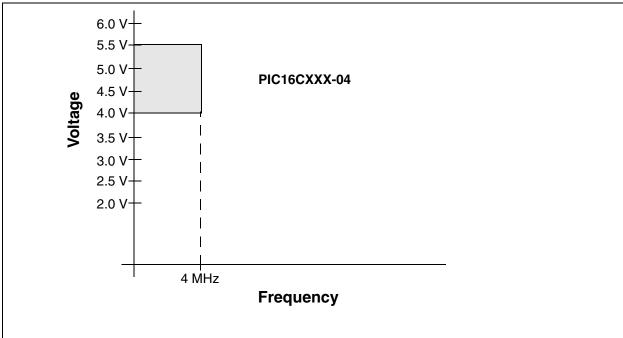
- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.


12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.


For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.


12.4 MPLINK/MPLIB Linker/Librarian


MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

13.1 DC Characteristics: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended)

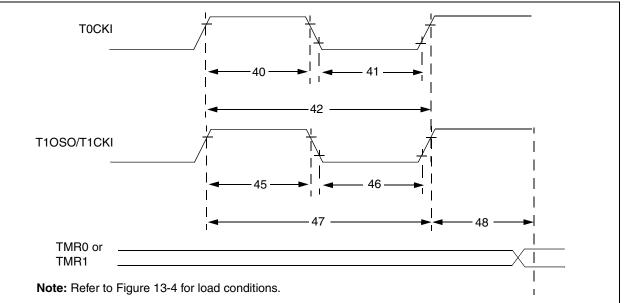
							ns (unless otherwise stated)
DC CHA	Operatir	ng temp	erature	e 0°C	$\leq TA \leq +70^{\circ}C$ for commercial		
DC CHA	NACIE					-40°C	\leq TA \leq +85°C for industrial
				-40°C	\leq TA \leq +125°C for extended		
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
-							
D001	Vdd	Supply Voltage	4.0	-	5.5	V	XT, RC and LP osc mode
D001A			4.5	-	5.5	V	HS osc mode
			VBOR*	-	5.5	V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004*	SVDD	VDD Rise Rate to	0.05	-	-	V/ms	
D004A*		ensure internal	TBD	-	-		PWRT disabled (PWRTE bit set)
		Power-on Reset signal					See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set
D010	IDD	Supply Current	-	2.7	5	mA	XT, RC osc modes
		(Note 2, 5)					Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc mode
2010					20		Fosc = 20 MHz, VDD = 5.5 V
D020	IPD	Power-down Current	-	10.5	42	μA	VDD = 4.0V, WDT enabled,-40°C to +85°C
		(Note 3, 5)	-	1.5	16	μA	VDD = $4.0V$, WDT disabled, 0°C to +70°C
D021			-	1.5	19	μ Α	VDD = 4.0V, WDT disabled, -40°C to +85°C
D021B			-	2.5	19	μΑ	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
		Module Differential					
		Current (Note 6)					
D022*	$\Delta IWDT$	Watchdog Timer	-	6.0	20	μA	WDTE BIT SET, VDD = 4.0V
D022A*	$\Delta IBOR$	Brown-out Reset	-	TBD	200	μA	BODEN bit set, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.

FIGURE 13-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

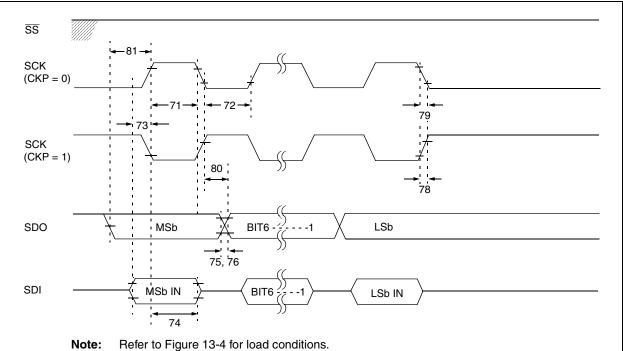
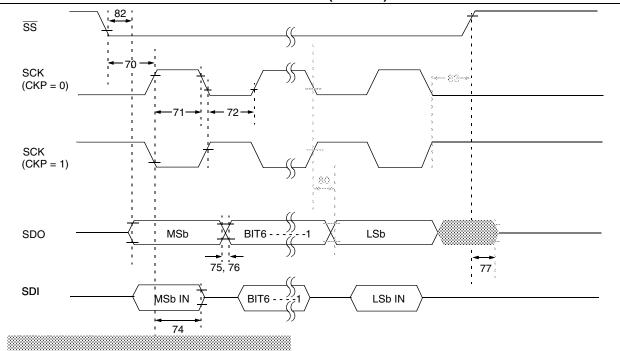


TABLE 13-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
IADEE IV V.	

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Tt0H	t0H T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	-	-	ns	Must also meet	
				With Prescaler	10	-		ns	parameter 42	
41* Tt0L		T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	-		ns	Must also meet	
				With Prescaler	10	-		ns	parameter 42	
42*	Tt0P			No Prescaler	Tcy + 40	—	-	ns		
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	-	ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous, P	rescaler = 1	0.5Tcy + 20	—	-	ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	PIC16CXX	15	-		ns	parameter 47	
				PIC16LCXX	25	—	_	ns		
			Asynchronous	PIC16CXX	30		_	ns		
				PIC16LCXX	50		_	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5Tcy + 20	-		ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	PIC16CXX	15	—	-	ns	parameter 47	
				PIC16LCXX	25	—		ns		
			Asynchronous	PIC16CXX	30	-		ns		
				PIC16LCXX	50	-		ns		
47*	Tt1P	P T1CKI input period	Synchronous	PIC16CXX	GREATER OF: 30 OR <u>TCY + 40</u> N	-	-	ns	N = prescale value (1, 2, 4, 8)	
				PIC16LCXX	GREATER OF: 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	PIC16CXX	60	_	—	ns		
				PIC16LCXX	100	—	—	ns		
	Ft1	Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OS)			DC	-	200	kHz		
48	TCKEZtmr1	Delay from external clock edge to timer increment			2Tosc		7Tosc	_		

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)


TABLE 13-8: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteris	Characteristic		Тур†	Мах	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	-	_	ns	
71A		(slave mode)	Single Byte	40	—		ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—		ns	
72A		(slave mode)	Single Byte	40	—		ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	—	_	ns	
73A	Тв2в	Last clock edge of Byte1 edge of Byte2	1.5Tcy + 40	_	—	ns	Note 1	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75 7	TdoR	SDO data output rise time	PIC16CXX		10	25	ns	
			PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
78	TscR	SCK output rise time (master mode)	PIC16CXX	—	10	25	ns	
			PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (master mode)			10	25	ns	
	TscH2doV, TscL2doV	SDO data output valid after SCK edge	PIC16CXX	—	—	50	ns	
			PIC16LCXX		—	100	ns]
81	TdoV2scH, TdoV2scL	SDO data output setup to	SCK edge	Тсү		_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

FIGURE 13-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

TABLE 13-10: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	—		ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	_	ns	
72A		(slave mode)	Single Byte	40	—		ns	Note 1
73A	Тв2в	Last clock edge of Byte1 edge of Byte2	1.5Tcy + 40	—	_	ns	Note 1	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75	TdoR		PIC16CXX	—	10	25	ns	
			PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time	Э		10	25	ns	
77	TssH2doZ	SS [↑] to SDO output hi-im	pedance	10	—	50	ns	
78	TscR	SCK output rise time	PIC16CXX		10	25	ns	
		(master mode)	PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (ma	ster mode)		10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	PIC16CXX		—	50	ns	
			PIC16LCXX		—	100	ns	
82	TssL2doV	SDO data output valid	PIC16CXX		—	50	ns	
	after SS ↓ edge		PIC16LCXX		—	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5TCY + 40	—	—	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support