

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

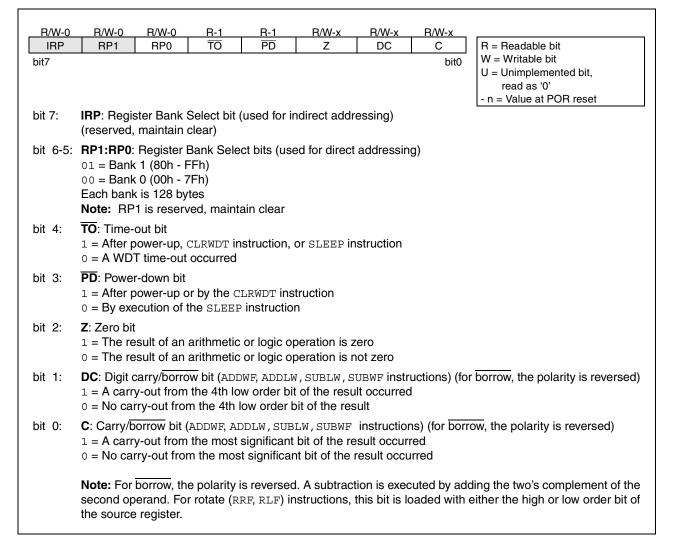
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72a-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.


The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, the write to these three bits is disabled. These bits are set or cleared according to the device logic. The TO and PD bits are not writable. The result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** The IRP and RP1 bits are reserved. Maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions.

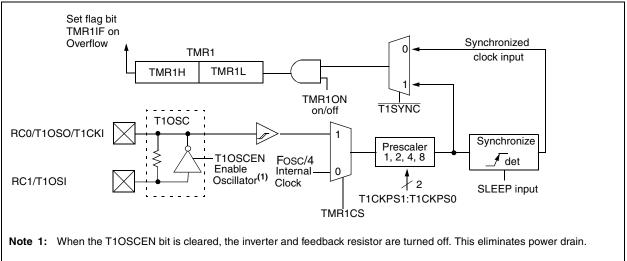
REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register and is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly accessible. All updates to the PCH register go through the PCLATH register.

2.3.1 STACK

The stack allows any combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

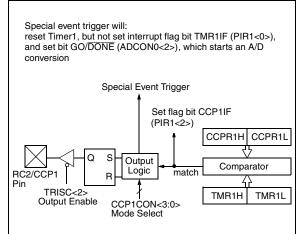

Mid-range devices have an 8 level deep hardware stack. The stack space is not part of either program or data space and the stack pointer is not accessible. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RET-FIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

2.4 Program Memory Paging

The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper bit of the address is provided by PCLATH<3>. The user must ensure that the page select bit is programmed to address the proper program memory page. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped from the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions.

FIGURE 5-1: TIMER1 BLOCK DIAGRAM


7.2 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). The interrupt flag bit, CCP1IF, is set on all compare matches.

FIGURE 7-2: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When a generated software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

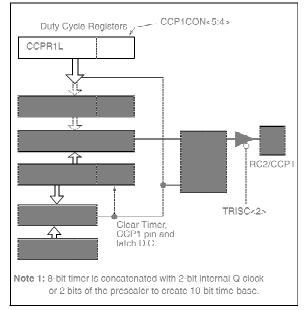
The special trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

TABLE 7-3 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 0003	: 0000 000u
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
87h	TRISC	PORTC Da	PORTC Data Direction Register								1111 1111
0Eh	TMR1L	Holding reg	Holding register for the Least Significant Byte of the 16-bit TMR1 register								uuuu uuuu
0Fh	TMR1H	Holding reg	Holding register for the Most Significant Byte of the 16-bit TMR1register							XXXX XXXX	uuuu uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
15h	CCPR1L	Capture/Compare/PWM register1 (LSB)							XXXX XXXX	uuuu uuuu	
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)							XXXX XXXX	uuuu uuuu	
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

7.3 <u>PWM Mode</u>


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 7-3 shows a simplified block diagram of the CCP module in PWM mode.

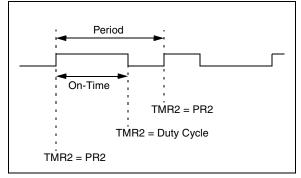

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 7.3.3.

FIGURE 7-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 7-4) has a time base (period) and a time that the output stays high (on-time). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 7-4: PWM OUTPUT

7.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 6.0) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

7.3.2 PWM ON-TIME

The PWM on-time is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. CCPR1L contains eight MSbs and CCP1CON<5:4> contains two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the on-time value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM on-time. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Resolution =
$$\frac{\log(\frac{Fosc}{Fpwm})}{\log(2)}$$
 bits

Note: If the PWM on-time value is larger than the PWM period, the CCP1 pin will not be cleared.

For an example PWM period and on-time calculation, see the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

8.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

For more information on SSP operation (including an I²C Overview), refer to the PIC[®] MCU Mid-Range Reference Manual, (DS33023). Also, refer to Application Note AN578, *"Use of the SSP Module in the I²C Multi-Master Environment."*

8.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

Additional information on SPI operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.2.1 OPERATION OF SSP MODULE IN SPI MODE

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-1.

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, three pins are used:

- Serial Data Out (SDO)RC5/SDO
- Serial Data In (SDI)RC4/SDI/SDA
- Serial Clock (SCK)RC3/SCK/SCL

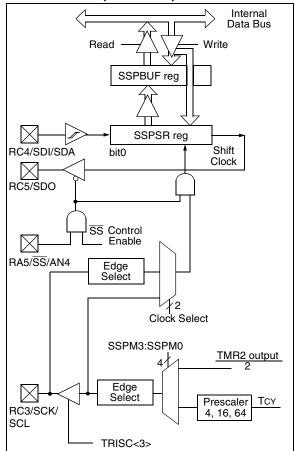
Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON reg-


ister, and then set bit SSPEN. This configures the SDI, SDO, SCK and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if used)

Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-1: SSP BLOCK DIAGRAM (SPI MODE)

8.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

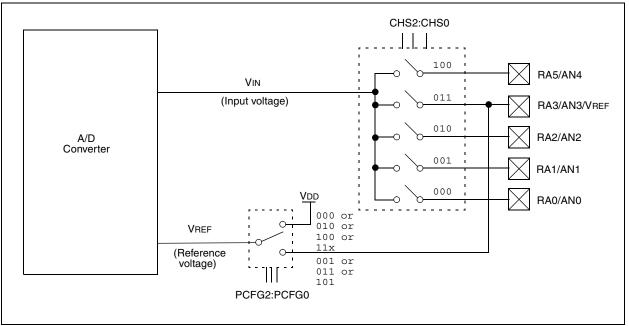
In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal

'1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Status Bits as Data Transfer is Received				Set bit SSPIF	
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)	
0	0	Yes	Yes	Yes	
1	0	No	No	Yes	
1	1	No	No	Yes	
0	1	Yes	No	Yes	

TABLE 8-2 DATA TRANSFER RECEIVED BYTE ACTIONS


Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit, ADCON0<2>, is cleared, and the A/D interrupt flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 9-1.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 9.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 9-1: A/D BLOCK DIAGRAM

9.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

The A/D module can operate during sleep mode, but the RC oscillator must be selected as the A/D clock source prior to the SLEEP instruction.

Table 9-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

9.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins) may cause the input buffer to consume current that is out of the devices specification.

TABLE 9-1TAD vs. DEVICE OPERATING FREQUENCIES

AD Cloc	k Source (TAD)	Device Frequency					
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz		
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs		
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾		
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾		
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾		

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

- 2: These values violate the minimum required TAD time.
- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

9.4 <u>A/D Conversions</u>

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

9.5 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module be enabled (ADON bit is set). When the trigger occurs, the

TABLE 9-2 SUMMARY OF A/D REGISTERS

GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead. The appropriate analog input channel must be selected and the minimum acquisition time must pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

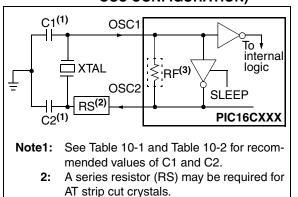
If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	_	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	ult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	_	—	—	—	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA		—	PORTA D	PORTA Data Direction Register						11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES


The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

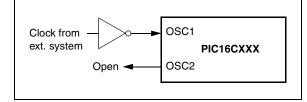

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can use an external clock source to drive the OSC1/CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

Ranges Tested:

Ranges lested:						
Mode	Freq	OSC1	0\$C2			
XT	455 kHz	68 - 100 pF	68 - 100 pF			
	2.0 MHz	15 - 68 pF 🛛 <	15 - 68 pF			
	4.0 MHz	15 - 68 pF	∖15, - 68 pF			
HS	8.0 MHz	10 - 68(pF	े10 - 68 pF			
	16.0 MHz	10,-22,0F	10 - 22 pF			
	se values are f es at bottom of y	ior design guidar zage	nce only. See			
Resonator	rs Used: 🔨	Par -				
455 kHz	Panasonie E	FO-A455K04B	± 0.3%			
2.0 MHz	Murata Érie (CSA2.00MG	$\pm 0.5\%$			
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MAHZ	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie CSA16.00MX ± 0.5%					
Resonators did not have built-in capacitors.						

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF 🔍	↓15.pF 15.pF
	4 MHz	15 pF 🕟	15 pF
HS	4 MHz	15 pt	✓ 15 pF
	8 MHz	15-33 pE>	15-33 pF
	20 MHz	(15-33 pF	15-33 pF
	values are	for design guida r page.	n ce only. See
	Crys	tals Used	
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM
200 kt/2	STO XTL 2	± 20 PPM	
1 MHz	ECS ECS-	± 50 PPM	
4 MHz	ECS ECS-4	± 50 PPM	
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

EPSON CA-301 20.000M-C

20 MHz

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

± 30 PPM

- 3: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
- 4: Oscillator performance should be verified when migrating between devices (including PIC16C62A to PIC16C62B and PIC16C72 to PIC16C72A)

13.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Maximum current sunk by PORTC	200 mA
Maximum current sourced by PORTC	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	ЮН) x IOH} + ∑(VOI x IOL)

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.1 DC Characteristics: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended)

							ns (unless otherwise stated)
DC CHA		DISTICS	Operatir	ng temp	erature	e 0°C	$\leq TA \leq +70^{\circ}C$ for commercial
DC CHA	NACIE					-40°C	\leq TA \leq +85°C for industrial
						-40°C	\leq TA \leq +125°C for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
-							
D001	Vdd	Supply Voltage	4.0	-	5.5	V	XT, RC and LP osc mode
D001A			4.5	-	5.5	V	HS osc mode
			VBOR*	-	5.5	V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004*	SVDD	VDD Rise Rate to	0.05	-	-	V/ms	
D004A*		ensure internal	TBD	-	-		PWRT disabled (PWRTE bit set)
		Power-on Reset signal					See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set
D010	IDD	Supply Current	-	2.7	5	mA	XT, RC osc modes
		(Note 2, 5)					Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc mode
2010					20		Fosc = 20 MHz, VDD = 5.5 V
D020	IPD	Power-down Current	-	10.5	42	μA	VDD = 4.0V, WDT enabled,-40°C to +85°C
		(Note 3, 5)	-	1.5	16	μA	VDD = $4.0V$, WDT disabled, 0°C to +70°C
D021			-	1.5	19	μ Α	VDD = 4.0V, WDT disabled, -40°C to +85°C
D021B			-	2.5	19	μΑ	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
		Module Differential					
		Current (Note 6)					
D022*	$\Delta IWDT$	Watchdog Timer	-	6.0	20	μA	WDTE BIT SET, VDD = 4.0V
D022A*	$\Delta IBOR$	Brown-out Reset	-	TBD	200	μA	BODEN bit set, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

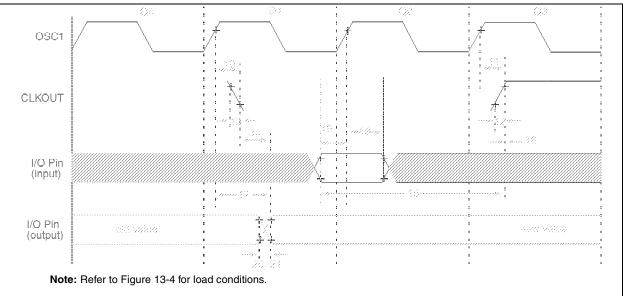
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.

13.3 DC Characteristics:

cs: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended) PIC16LC62B/72A-04 (Commercial, Industrial)

DC CHA	ARACTE	RISTICS	Operating	tempe voltage	rature 0' -40' -40 e VDD rang	°C ≤1 °C ≤1 °C ≤1	less otherwise stated) $A \le +70^{\circ}C$ for commercial $A \le +85^{\circ}C$ for industrial $A \le +125^{\circ}C$ for extended escribed in DC spec Section 13.1
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030 D030A		with TTL buffer	Vss Vss	-	0.15Vdd 0.8V	V V	For entire VDD range $4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2Vdd	V	
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3Vdd	V	Note1
		Input High Voltage					
	Vін	I/O ports		-			
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25Vd D + 0.8V	-	Vdd	V	For entire VDD range
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	v	For entire VDD range
D042		MCLR	0.8Vdd	-	Vdd	V	
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	Note1
D043		OSC1 (in RC mode)	0.9Vdd	-	Vdd	V	
		Input Leakage Current (Notes 2, 3)					
D060	lı∟	I/O ports	-	-	±1	μA	$\label{eq:Vss} \begin{split} &Vss \leq V PIN \leq V DD, \\ &Pin \ at \ hi\ impedance \end{split}$
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc modes
D070	IPURB	PORTB weak pull-up current	50	250	400	μA	VDD = 5V, VPIN = VSS
D080	Vol	Output Low Voltage I/O ports	-	-	0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C

* These parameters are characterized but not tested.

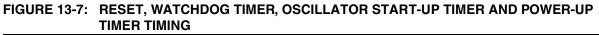

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

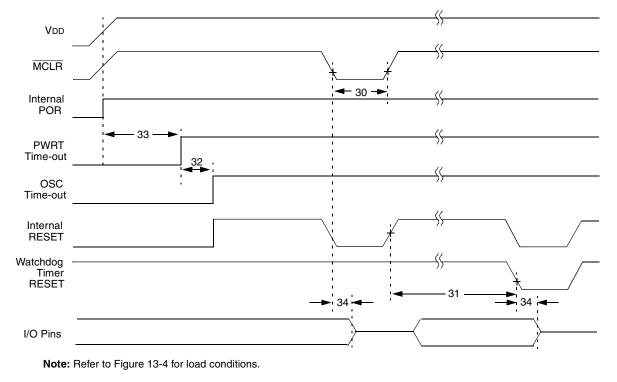
Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

3: Negative current is defined as current sourced by the pin.

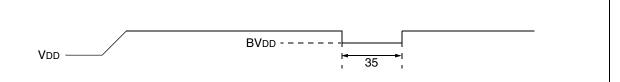
^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		—		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	т↑	Tosc + 200		_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0		_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port of	out valid	—	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC16CXX	100		_	ns	
18A*		input invalid (I/O in hold time)	PIC16LCXX	200		_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16CXX	—	10	40	ns	
20A*			PIC16LCXX	_		80	ns	
21*	TioF	Port output fall time	PIC16CXX	—	10	40	ns	
21A*			PIC16LCXX	_	_	80	ns	
22††*	Tinp	INT pin high or low time	·	Тсү	_	—	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	_	_	ns	


TABLE 13-3:	CLKOUT AND I/O TIMING REQUIREMENTS

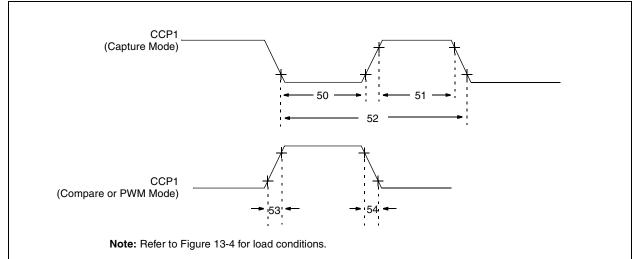

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


tt These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 13-8: BROWN-OUT RESET TIMING

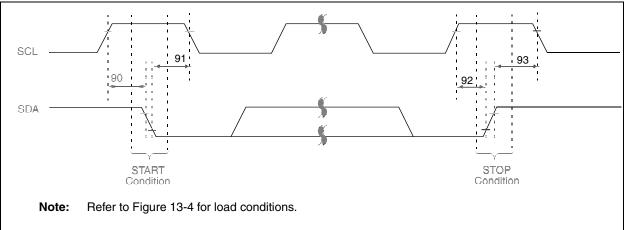

TABLE 13-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillator Start-up Timer Period		1024 Tosc	—	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	—	μS	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-10: CAPTURE/COMPARE/PWM TIMINGS


TABLE 13-6: CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Sym		Characteristi	С	Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low	No Prescaler		0.5TCY + 20	—	—	ns	
		time	With Prescaler	PIC16CXX	10	_	_	ns	
				PIC16LCXX	20	_	_	ns	
51*	TccH	CCP1 input high	No Prescaler		0.5TCY + 20	_	_	ns	
		time	With Prescaler	PIC16CXX	10	-	—	ns	
				PIC16LCXX	20	_	_	ns	
52*	TccP	CCP1 input perior	d		<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 output rise	time	PIC16CXX	—	10	25	ns	
				PIC16LCXX	—	25	45	ns	
54*	TccF	CCP1 output fall t	ime	PIC16CXX	—	10	25	ns	
				PIC16LCXX	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-15: I²C BUS START/STOP BITS TIMING

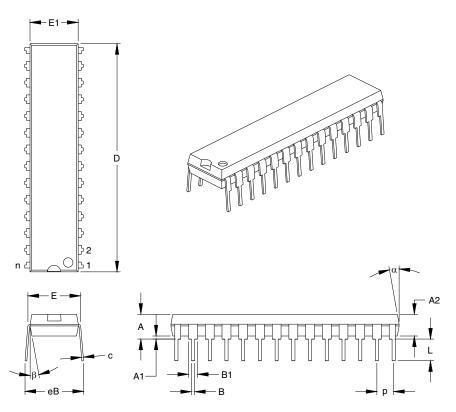


TABLE 13-11: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Charac	teristic	Min	Ту р	Max	Unit s	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700		—	ns	Only relevant for repeated
		Setup time	400 kHz mode	600	_	—		START condition
91*	THD:STA	START condition	100 kHz mode	4000		—	ns	After this period the first clock
		Hold time	400 kHz mode	600		—		pulse is generated
92*	TSU:STO	STOP condition	100 kHz mode	4700		—	ns	
		Setup time	400 kHz mode	600		—		
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	_	—		

These parameters are characterized but not tested.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP) 15.2

	Units		INCHES*		Ν	IILLIMETERS	3
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.279	.307	.335	7.09	7.80	8.51
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

*Controlling Parameter

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070

Instruction Set		67
ADDLW .		69
		•••••
-		
-	-	
-		
INCFSZ		71
IORLW		72
IORWF		72
MOVF		72
-		
		-
		-
		-
-		
-		
	ster	
0		/
		-
		-
RBIE Bit		13
RBIF Bit		3, 21
T0IE Bit		13
T0IF Bit		13
	ces5	
	version Complete	
	igram	
	Complete (CCP)	
	Complete (CCP)	
Interrupt of	on Change (RB7:RB4)	21
	Pin, External	
	eive/Transmit Complete2	
	/erflow	
	PR2 Match	
	PR2 Match (PWM)	
	ntext Saving During	
Interrupts, Ena		
	verter Enable (ADIE Bit)	14
	able (CCP1IE Bit)	
Global Int	terrupt Enable (GIE Bit)1	3, 62
	on Change (RB7:RB4)	, .=
Enable (F	RBIE Bit) 1	
	al Interrupt Enable (PEIE Bit)	

RB0/INT Enable (INTE Bit)13 SSP Enable (SSPIE Bit)14
SSP Enable (SSPIE Bit)14
$TMDOO_{varflow}$ Enchlo (TOLE Dit) 12
TMR0 Overflow Enable (T0IE Bit)
TMR1 Overflow Enable (TMR1IE Bit)14
TMR2 to PR2 Match Enable (TMR2IE Bit) 14
Interrupts, Flag Bits
A/D Converter Flag (ADIF Bit)15, 51
CCP1 Flag (CCP1IF Bit)15, 34, 35
Interrupt on Change (RB7:RB4)
Flag (RBIF Bit)13, 21, 63
RB0/INT Flag (INTF Bit)13
SSP Flag (SSPIF Bit)
TMR0 Overflow Flag (T0IF Bit)13, 63
TMR1 Overflow Flag (TMR1IF Bit) 15
TMR2 to PR2 Match Flag (TMR2IF Bit) 15
K
KeeLoq® Evaluation and Programming Tools
ReeLog® Evaluation and Programming roots
М
Master Clear (MCLR)
MCLR Reset, Normal Operation
MCLR Reset, SLEEP
Memory Organization
Data Memory8
Program Memory7
MPLAB Integrated Development Environment Software 75
MFLAD Integrated Development Environment Software 75
0
-
OPCODE Field Descriptions
OPTION_REG Register10, 12
INTEDG Bit
PS2:PS0 Bits12, 25
PSA Bit12, 25
RBPU Bit
T0CS Bit12, 25
T0CS Bit12, 25 T0SE Bit12, 25
T0CS Bit12, 25
T0CS Bit12, 25 T0SE Bit12, 25
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105 Paging, Program Memory 7, 17
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105 Paging, Program Memory 7, 17 PCON Register 16, 60
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 POR Bit 16
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 7 Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 7 Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICSTART® Plus Entry Level Development System 77
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 7 Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P 7 Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICSTART® Plus Entry Level Development System 77
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P Packaging Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 POR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICTER-3 Low-Cost PIC16CXXX Demo Board 77 PIE1 Register 10, 14 ADIE Bit <
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P P Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 POR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PIC18 Bit 10, 14 ADIE Bit 14
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P P Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 POR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PIC18 Bit 14 CCP11E Bit 14 SSPIE Bit 14
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P P Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 POR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PIC18 Bit 14 ADIE Bit 14 SPIE Bit 14 TMR11E Bit 14
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P P Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 POR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PIC18 Bit 14 CCP11E Bit 14 SSPIE Bit 14
TOCS Bit 12, 25 TOSE Bit 12, 25 OSC1/CLKIN Pin 6 OSC2/CLKOUT Pin 6 Oscillator Configuration 55, 56 HS 56, 60 LP 56, 60 RC 6, 57, 60 Selection (FOSC1:FOSC0 Bits) 55 XT 56, 60 Oscillator, Timer1 27, 29 Oscillator, WDT 64 P P Packaging 105 Paging, Program Memory 7, 17 PCON Register 16, 60 BOR Bit 16 POR Bit 16 PICDEM-1 Low-Cost PIC MCU Demo Board 77 PICDEM-2 Low-Cost PIC16CXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PICDEM-3 Low-Cost PIC16CXXX Demo Board 77 PIC18 Bit 14 ADIE Bit 14 SPIE Bit 14 TMR11E Bit 14