

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72a-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C62B/72A

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 ADIE⁽¹⁾ SSPIE CCP1IE TMR2IE TMR1IE R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset Unimplemented: Read as '0' bit 7: ADIE⁽¹⁾: A/D Converter Interrupt Enable bit bit 6: 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt bit 5-4: Unimplemented: Read as '0' bit 3: SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2: 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit bit 1: 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit bit 0: 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Note 1: The PIC16C62B does not have an A/D module. This bit location is reserved on these devices. Always maintain this bit clear.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register and is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly accessible. All updates to the PCH register go through the PCLATH register.

2.3.1 STACK

The stack allows any combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8 level deep hardware stack. The stack space is not part of either program or data space and the stack pointer is not accessible. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RET-FIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

2.4 Program Memory Paging

The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper bit of the address is provided by PCLATH<3>. The user must ensure that the page select bit is programmed to address the proper program memory page. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped from the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions.

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	PORTB	Data Directio	on Regist	ter					1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input, (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output, (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override maybe in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

NOTES:

6.1 <u>Timer2 Operation</u>

The Timer2 output is also used by the CCP module to generate the PWM "On-Time", and the PWM period with a match with PR2.

The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

6.2 <u>Timer2 Interrupt</u>

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

6.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate shift clock.

TABLE 6-1 REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	-	ADIF			SSPIF	CCP1IF	TMR2IF	TMR1IF	-00-0000	0000 0000
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	0000 0000
11h	TMR2	Timer2 mod	Timer2 module's register							0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Period Register								1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

7.3 <u>PWM Mode</u>

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 7-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 7.3.3.

FIGURE 7-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 7-4) has a time base (period) and a time that the output stays high (on-time). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 7-4: PWM OUTPUT

7.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 6.0) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

7.3.2 PWM ON-TIME

The PWM on-time is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. CCPR1L contains eight MSbs and CCP1CON<5:4> contains two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the on-time value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM on-time. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Resolution =
$$\frac{\log(\frac{Fosc}{Fpwm})}{\log(2)}$$
 bits

Note: If the PWM on-time value is larger than the PWM period, the CCP1 pin will not be cleared.

For an example PWM period and on-time calculation, see the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.3.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and the CKP will be cleared by hardware, holding SCL low. Slave devices cause the master to wait by holding the SCL line low. The transmit data is loaded into the SSPBUF register, which in turn loads the SSPSR register. When bit CKP (SSP-CON<4>) is set, pin RC3/SCK/SCL releases SCL. When the SCL line goes high, the master may resume operating the SCL line and receiving data. The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-4).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 8-4: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

REGISTER 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

B/M-0	B/W-0	B/W-0	B/W-0	B/W/-0	B/W-0	B/W-0	B/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	B = Beadable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL : W 1 = The S (must be c 0 = No col	rite Collisio SPBUF reg cleared in s lision	on Detect gister is w software)	bit ritten while	e it is still ti	ransmitting	g the previou	us word
bit 6:	SSPOV: R	eceive Ov	erflow Ind	cator bit				
	$\frac{\text{In SPI mon}}{1 = A \text{ new}}$ the data in if only tran each new 0 = No over	<u>de</u> byte is reco SSPSR is nsmitting d reception (erflow	eived while lost. Over ata, to ave and trans	e the SSPE flow can o bid setting mission) is	BUF registen nly occur i overflow. initiated b	er is still ho in slave mo In master by writing t	olding the pro ode. The use operation, t o the SSPB	evious data. In case of overflow, er must read the SSPBUF, even he overflow bit is not set since SUF register.
	$\frac{\ln l^2 C \mod 1}{1 = A \text{ byte}}$ in transmit 0 = No over	<u>te</u> is receivec t mode. SS erflow	l while the POV mus	SSPBUF I t be cleare	register is ed in softw	still holding are in eithe	g the previou er mode.	us byte. SSPOV is a "don't care"
bit 5:	SSPEN: S	ynchronou	is Serial F	ort Enable	bit			
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	<u>de</u> es serial po es serial p	ort and co ort and co	nfigures So nfigures th	CK, SDO, nese pins a	and SDI a as I/O port	s serial port pins	t pins
	$\frac{\ln l^2 C \mod}{1 = \text{Enable}}$ $0 = \text{Disable}$ $\ln \text{ both model}$	<u>de</u> es the seria es serial p odes, wher	al port and ort and co i enabled,	l configure nfigures th these pins	s the SDA nese pins a s must be	and SCL as I/O port properly co	pins as seri pins onfigured as	al port pins s input or output.
bit 4:	CKP : Clock Polarity Select bit In SPI mode 1 = Idle state for clock is a high level $0 = Idle state for clock is a low level In I2C mode SCK release control 1 = Enable clock$							
bit 3-0:	SSPM3:Si0000 = SF0001 = SF0010 = SF0100 = SF0100 = SF0101 = SF0110 = I2(0111 = I2(1110 = I2(1111 = I2)	SPM0: Syr PI master of PI master of PI master of PI master of PI slave mo CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo	nchronous operation, operation, operation, operation, ode, clock ode, clock de, 7-bit a de, 10-bit controlled de, 7-bit a de, 10-bit	Serial Pou clock = Fo clock = Fo clock = Fo clock = TM = SCK pin = SCK pin address address d master of address with address with	rt Mode Se ISC/4 ISC/16 ISC/64 IR2 outpu ISS pin c ISS pin c ISS pin c ISS pin c IN SS pin c	elect bits t/2 ontrol ena ontrol disa slave idle) d stop bit i nd stop bit	bled. bled. SS ca nterrupts er i interrupts e	n be used as I/O pin nabled enabled

Г

9.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Note: This section applies to the PIC16C72A only.

The analog-to-digital (A/D) converter module has five input channels.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has the feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

Additional information on the A/D module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 9-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 9-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an internal RC oscillator)							
bit 5-3:	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4)							
bit 2:	GO/DON	E: A/D Co	nversion S	Status bit				
	$\frac{\text{If ADON}}{1 = \text{A/D c}}$ $0 = \text{A/D c}$ conversio	<u>= 1</u> onversion onversion n is comp	in progres not in pro lete)	ss (setting gress (Thi	this bit starts s bit is automa	the A/D co atically clea	onversion) ared by hard	ware when the A/D
bit 1:	Unimpler	mented: F	Read as '0'					
bit 0:	ADON : A 1 = A/D c 0 = A/D c	/D On bit onverter r onverter r	nodule is o nodule is s	operating shutoff and	d consumes n	o operating	g current	

REGISTER 9-1: ADCON0 REGISTER (ADDRESS 1Fh)

10.0 SPECIAL FEATURES OF THE CPU

The PIC16C62B/72A devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Mode Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming[™] (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The

FIGURE 10-1: CONFIGURATION WORD

other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

10.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

CP1	CP0	CP1	CP0	CP1	CP0	_	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13		bit0 Address: 2007h													
bit 13 5-	-8 -4: :	CP1:CP0: Code Protection bits ⁽²⁾ 11 = Code protection off 10 = Upper half of program memory code protected D = Upper half of program memory code protected													
	(00 = AII	mem	ory is o	code p	rotect	ed								
bit 7:	I	Jnimpl	emen	ted: R	ead as	s '1'									
bit 6:	:	BODEN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR enabled 0 = BOR disabled													
bit 3:] :	PWRTE 1 = PW 0 = PW	: Pow RT dis RT en	er-up ⁻ sabled abled	Timer I	Enable	e bit (1)								
bit 2:	:	WDTE : 1 = WD 0 = WD	Watcł T ena T disa	ndog T bled ıbled	imer E	nable	bit								
bit 1-	0: 1	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator													
Note	1: 1	Enablin All of th	g Brov e CP1	vn-out :CP0 j	Reset pairs m	auton nust be	natically e e given th	enable le sam	s Pow ie valu	er-up Tim e to enab	er (PWR le the co	T), regaro de protec	dless of the tion schem	e value of bit ne listed.	PWRTE.

10.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 <u>Reset</u>

The PIC16CXXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged by any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and on Brown-out Reset (BOR). They are not affected by a WDT Wake-up from SLEEP, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared depending on the reset situation, as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will ignore small pulses. However, a valid $\overline{\text{MCLR}}$ pulse must meet the minimum pulse width (TmcL, Specification #30).

No internal reset source (WDT, BOR, POR) will drive the $\overline{\text{MCLR}}$ pin low.

Register	Δορί	cable	Power-on Reset	MCL B Besets	Wake-up via WDT or		
negiotoi	Dev	ices	Brown-out Reset	WDT Reset	Interrupt		
W	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu		
INDF	62B	72A	N/A	N/A	N/A		
TMR0	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PCL	62B	72A	0000h	0000h	PC + 1 ⁽²⁾		
STATUS	62B	72A	0001 1xxx	000q quuu (3)	uuuq quuu (3)		
FSR	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PORTA ⁽⁴⁾	62B	72A	0x 0000	0u 0000	uu uuuu		
PORTB ⁽⁵⁾	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PORTC ⁽⁵⁾	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PCLATH	62B	72A	0 0000	0 0000	u uuuu		
INTCON	62B	72A	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾		
DID1	62B	72A	0000	0000	uuuu (1)		
	62B	72A	-0 0000	-0 0000	-u uuuu (1)		
TMR1L	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu		
TMR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
T1CON	62B	72A	00 0000	uu uuuu	uu uuuu		
TMR2	62B	72A	0000 0000	0000 0000	uuuu uuuu		
T2CON	62B	72A	-000 0000	-000 0000	-uuu uuuu		
SSPBUF	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu		
SSPCON	62B	72A	0000 0000	0000 0000	uuuu uuuu		
CCPR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCPR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCP1CON	62B	72A	00 0000	00 0000	uu uuuu		
ADRES	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADCON0	62B	72A	0000 00-0	0000 00-0	uuuu uu-u		
OPTION_REG	62B	72A	1111 1111	1111 1111	uuuu uuuu		
TRISA	62B	72A	11 1111	11 1111	uu uuuu		
TRISB	62B	72A	1111 1111	1111 1111	uuuu uuuu		
TRISC	62B	72A	1111 1111	1111 1111	uuuu uuuu		
	62B	72A	0000	0000	uuuu		
PIEI	62B	72A	-0 0000	-0 0000	-u uuuu		
PCON	62B	72A	0q	uq	uq		
PR2	62B	72A	1111 1111	1111 1111	1111 1111		
SSPADD	62B	72A	0000 0000	0000 0000	uuuu uuuu		
SSPSTAT	62B	72A	0000 0000	0000 0000	uuuu uuuu		
ADCON1	62B	72A	000	000	uuu		

TABLE 10-6	INITIAL IZATION CONDITIONS FOR ALL REGISTERS
TADLE 10-0	INTIALIZATION CONDITIONS I ON ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.

4: On any device reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

FIGURE 10-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; a1 a2 a3 a4 ; a osc1////////////////////////////////////	21 Q2 Q3 Q4		a1 a2 a3 a4	01 02 03 04	01 02 03 04	a1 a2 a3 a4
CLKOUT(4)		Tost(2)				
INT pin			1 1			
INTF flag (INTCON<1>)		<u>`</u>	, , ,	Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	 	Processor in	<u> </u> 			
INSTRUCTION FLOW	1		1 1	· · ·	 	
PC X PC X	PC+1	PC+2	X PC+2	PC + 2	0004h	0005h
Instruction { fetched { Inst(PC) = SLEEP	Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Inst(PC - 1)	SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

10.14 Program Verification/Code Protection

If the code protection bits have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

10.16 In-Circuit Serial Programming™

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three more lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP[™]) Guide, DS30277.

PIC16C62B/72A

SUBLW	Subtract W from Literal							
Syntax:	[label]	SUBLW	k					
Operands:	$0 \le k \le 255$							
Operation:	$k - (W) \rightarrow (W)$							
Status Affected:	C, DC, Z							
Description:	The W reg plement m eral 'k'. The register.	ister is subl ethod) from e result is p	tracted (2's com- n the eight bit lit- laced in the W					

XORLW	Exclusive OR Literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.					

SUBWF	Subtract W from f	XORW
Syntax:	[<i>label</i>] SUBWF f,d	Syntax
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operar
Operation:	(f) - (W) \rightarrow (destination)	Operat
Status	C, DC, Z	Status
Affected:		Descrip
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	

XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.

13.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into Vod pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA and PORTB (combined)	
Maximum current sourced by PORTA and PORTB (combined)	
Maximum current sunk by PORTC	
Maximum current sourced by PORTC	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + Σ (VOI x IOL)

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 13-8: BROWN-OUT RESET TIMING

TABLE 13-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param	Sym	Characteristic		Тур†	Max	Units	Conditions
NO.							
30	TmcL	MCLR Pulse Width (low)	2	—		μS	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillator Start-up Timer Period	_	1024 Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset		_	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μS	$VDD \le BVDD (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-15: I²C BUS START/STOP BITS TIMING

TABLE 13-11: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Ty p	Max	Unit s	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	-	—	ns	Only relevant for repeated
		Setup time	400 kHz mode	600		—		START condition
91*	THD:STA	START condition	100 kHz mode	4000	_	—	ns	After this period the first clock
		Hold time	400 kHz mode	600	_	—		pulse is generated
92*	Tsu:sto	STOP condition	100 kHz mode	4700	_	—	ns	
		Setup time	400 kHz mode	600	_	—		
93	THD:STO	STOP condition	100 kHz mode	4000	_	—	ns	
		Hold time	400 kHz mode	600	_	—		

These parameters are characterized but not tested.

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP) 15.5

	Units	INCHES			MILLIMETERS*		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.66	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073

PIC16C62B/72A

PIR1 Register	9. 15
ADIF Bit	
CCP1IF Bit	
SSPIF Bit	
TMR1IF Bit	
TMR2IF Bit	
Pointer. FSR	
PORTA	6
Analog Port Pins	6
PORTA Register	
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	6, 19
RA5/SS/AN4 Pin	6. 39
TRISA Register	10, 19
PORTB	6
PORTB Register	9, 21
Pull-up Enable (RBPU Bit)	
RB0/INT Edge Select (INTEDG Bit)	
RB0/INT Pin. External	6. 63
RB3:RB0 Port Pins	
RB7:RB4 Interrupt on Change	63
RB7:RB4 Interrupt on Change	
Enable (RBIE Bit)	13. 63
RB7:RB4 Interrupt on Change	-,
Flag (RBIF Bit)	13, 21, 63
RB7:RB4 Port Pins	
TRISB Register	10, 21
PORTC	
Block Diagram	23
PORTC Register	
RC0/T1OSO/T1CKI Pin	
RC1/T1OSI Pin	6
RC2/CCP1 Pin	6
RC3/SCK/SCL Pin	6. 39
RC4/SDI/SDA Pin	6, 39
RC5/SDO Pin	6. 39
RC6 Pin	6
RC7 Pin	6
TRISC Register	10, 23
Postscaler, Timer2	<i>,</i>
Select (TOUTPS3:TOUTPS0 Bits)	31
Postscaler, WDT	25
Assignment (PSA Bit)	12, 25
Block Diagram	
Rate Select (PS2:PS0 Bits)	12, 25
Switching Between Timer0 and WDT	
Power-on Reset (POR) 55, 57,	59,60,61
Oscillator Start-up Timer (OST)	55, 59
POR Status (POR Bit)	16
Power Control (PCON) Register	60
Power-down (PD Bit)	11, 57
Power-on Reset Circuit, External	59
Power-up Timer (PWRT)	55, 59
PWRT Enable (PWRTE Bit)	55
Time-out (TO Bit)	11, 57
Time-out Sequence	60
Timing Diagram	92
Prescaler, Capture	34
Prescaler, Timer0	25
Assignment (PSA Bit)	12, 25
Block Diagram	26
Rate Select (PS2:PS0 Bits)	12, 25
Switching Between Timer0 and WDT	26
Prescaler, Timer1	28
Salact (T1CKPS1·T1CKPS0 Bite)	27

Prescaler, Timer2	36
Select (T2CKPS1:T2CKPS0 Bits)	31
PRO MATE® II Universal Programmer	77
Program Counter	
PCL Register	
PCLATH Register	9, 17, 63
Reset Conditions	60
Program Memory	7
Interrupt Vector	7
Paging	7, 17
Program Memory Map	7
Reset Vector	7
Program Verification	66
Programming Pin (Vpp)	6
Programming, Device Instructions	67
PWM (CCP Module)	36
Block Diagram	36
CCPR1H:CCPR1L Registers	36
Duty Cycle	36
Example Frequencies/Resolutions	37
Output Diagram	36
Period	36
Set-Up for PWM Operation	37
TMR2 to PR2 Match	31, 36
TMR2 to PR2 Match Enable (TMR2IE Bit) .	14
TMR2 to PR2 Match Flag (TMR2IF Bit)	15

Q

Q-Clock	
R	

Register File	8
Register File Map	8
Reset	55, 57
Block Diagram	58
Reset Conditions for All Registers	61
Reset Conditions for PCON Register	60
Reset Conditions for Program Counter	60
Reset Conditions for STATUS Register	60
Timing Diagram	92
Revision History	111

S

SEEVAL® Evaluation and Programming System . SLEEP	
Software Simulator (MPLAB-SIM)	
Special Features of the CPU	55
Special Function Registers	9
Speed, Operating	1
SPI (SSP Module)	
Block Diagram	39
Buffer Full Status (BF Bit)	46
Clock Edge Select (CKE Bit)	46
Clock Polarity Select (CKP Bit)	47
Data Input Sample Phase (SMP Bit)	46
Mode Select (SSPM3:SSPM0 Bits)	47
Receive Overflow Indicator (SSPOV Bit)	47
Serial Clock (RC3/SCK/SCL)	39
Serial Data In (RC4/SDI/SDA)	39
Serial Data Out (RC5/SDO)	39
Slave Select (RA5/SS/AN4)	39
Synchronous Serial Port Enable (SSPEN Bit)	47