

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72a-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Key Features PIC [®] Mid-Range Reference Manual (DS33023)	PIC16C62B	PIC16C72A
Operating Frequency	DC - 20 MHz	DC - 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Program Memory (14-bit words)	2K	2K
Data Memory (bytes)	128	128
Interrupts	7	8
I/O Ports	Ports A,B,C	Ports A,B,C
Timers	3	3
Capture/Compare/PWM modules	1	1
Serial Communications	SSP	SSP
8-bit Analog-to-Digital Module	—	5 input channels

Table of Contents

10	Device Overview	F
1.0		5 7
2.0		/
3.0	// Ports	19
4.0	Timer0 Module	25
5.0	Timer1 Module	27
6.0	Timer2 Module	31
7.0	Capture/Compare/PWM (CCP) Module	33
8.0	Synchronous Serial Port (SSP) Module	39
9.0	Analog-to-Digital Converter (A/D) Module	49
10.0	Special Features of the CPU	55
11.0	Instruction Set Summary	67
12.0	Development Support	75
13.0	Electrical Characteristics	81
14.0	DC and AC Characteristics Graphs and Tables	. 103
15.0	Packaging Information	. 105
Appe	ndix A: Revision History	. 111
Appe	ndix B: Conversion Considerations	. 111
Appe	ndix C: Migration from Base-line to Mid-Range Devices	. 112
Index	· · · · · · · · · · · · · · · · · · ·	. 113
On-L	ine Support	. 117
Read	er Response	. 118
PIC1	6C62B/72A Product Identification System	. 119

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

PIC16C62B/72A

TABLE 1-1 PIC16C62B/PIC16C72A PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0 ⁽⁴⁾	2	2	I/O	TTL	RA0 can also be analog input 0
RA1/AN1 ⁽⁴⁾	3	3	I/O	TTL	RA1 can also be analog input 1
RA2/AN2 ⁽⁴⁾	4	4	I/O	TTL	RA2 can also be analog input 2
RA3/AN3/VREF ⁽⁴⁾	5	5	I/O	TTL	RA3 can also be analog input 3 or analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/ SS/ AN4 ⁽⁴⁾	7	7	I/O	TTL	RA5 can also be analog input 4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6	17	17	I/O	ST	
RC7	18	18	I/O	ST	
Vss	8, 19	8, 19	Р	—	Ground reference for logic and I/O pins.
Vdd	20	20	Р	—	Positive supply for logic and I/O pins.
Legend: I = input	O = outp	but	I/O = i	nput/output	P = power or program
	— = Not	t used	TTL =	TTL input	ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: The A/D module is not available on the PIC16C62B.

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these microcontrollers. Each block (Program Memory and Data Memory) has its own bus, so that concurrent access can occur.

Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

The PIC16C62B/72A devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Each device has 2K x 14 words of program memory. Accessing a location above 07FFh will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register, which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave duty cycle register. Table 7-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable. Additional information on the CCP module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

TABLE 7-1CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 7-2INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

REGISTER 7-1:CCP1CON REGISTER (ADDRESS 17h)

7.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register, when an event occurs on pin RC2/CCP1. An event is defined as:

- every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit ,CCP1IF (PIR1<2>), is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

FIGURE 7-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

7.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 is configured as an output, a write to the port can cause a capture condition.

7.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work consistently.

7.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should clear CCP1IE (PIE1<2>) before changing the capture mode to avoid false interrupts. Clear the interrupt flag bit, CCP1IE before setting CCP1IE.

7.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 7-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

7.2 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). The interrupt flag bit, CCP1IF, is set on all compare matches.

FIGURE 7-2: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When a generated software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

TABLE 7-3 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
87h	TRISC	PORTC Da	PORTC Data Direction Register							1111 1111	1111 1111
0Eh	TMR1L	Holding reg	Holding register for the Least Significant Byte of the 16-bit TMR1 register						uuuu uuuu		
0Fh	TMR1H	Holding reg	Holding register for the Most Significant Byte of the 16-bit TMR1register						xxxx xxxx	uuuu uuuu	
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
15h	CCPR1L	Capture/Compare/PWM register1 (LSB)							xxxx xxxx	uuuu uuuu	
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)						xxxx xxxx	uuuu uuuu		
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

8.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

8.1 <u>SSP Module Overview</u>

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

For more information on SSP operation (including an I²C Overview), refer to the PIC[®] MCU Mid-Range Reference Manual, (DS33023). Also, refer to Application Note AN578, *"Use of the SSP Module in the I²C Multi-Master Environment."*

8.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

Additional information on SPI operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.2.1 OPERATION OF SSP MODULE IN SPI MODE

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-1.

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, three pins are used:

- Serial Data Out (SDO)RC5/SDO
- Serial Data In (SDI)RC4/SDI/SDA
- Serial Clock (SCK)RC3/SCK/SCL

Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON reg-

ister, and then set bit SSPEN. This configures the SDI, SDO, SCK and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if used)

Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-1: SSP BLOCK DIAGRAM (SPI MODE)

When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit, ADCON0<2>, is cleared, and the A/D interrupt flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 9-1.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 9.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 9-1: A/D BLOCK DIAGRAM

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES

The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can use an external clock source to drive the OSC1/CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

Ranges Tested:

naliyes lesteu.					
Mode	Freq OSC1 OSC2				
XT	455 kHz	68 - 100 pF	68 - 100 pF		
	2.0 MHz	15 - 68 pF 🛛 <	15-68 pF		
	4.0 MHz	15 - 68 pF	15 - 68 pF		
HS	8.0 MHz	10 - 68(pF	∕10 - 68 pF		
	16.0 MHz	10,-22,0F	10 - 22 pF		
The note	These values are for design guidance only. See notes at bottom of page.				
Resonators Used:					
455 kHz	Panasonie	FO-A455K04B	± 0.3%		
2.0 MHz	Murata Érie (CSA2.00MG	$\pm 0.5\%$		
4.0 MHz	4.0 MHz Murata Erie CSA4.00MG ± 0.5%				
8.0 MATHZ	Murata Erie CSA8.00MT ± 0.5%				
16.0 MHz	Murata Erie	CSA16.00MX	$\pm 0.5\%$		
Resona	ators did not ha	ve built-in capacito	ors.		

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	200 kHz	47-68 pF	47-68 pF		
	1 MHz	15 pF 🔍	✓ 15 pF		
	4 MHz	15 pF			
HS	4 MHz	15 pt	💛 15 pF		
	8 MHz	15-33 pE>	15-33 pF		
	20 MHz	15-33 pF	15-33 pF		
These notes a	These values are for design guidance only. See notes at bottom of page.				
	Crys	tals Used			
32 kHz	Epson C-001R32.768K-A ± 20 PPM				
200 KHZ	970 XTL 200.000KHz ± 20 PPM				
1 MHz S	ECS ECS-10-13-1 ± 50 PPM				
4 MHz	ECS ECS-40-20-1 ± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C ± 30 PF				

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

EPSON CA-301 20.000M-C

20 MHz

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

± 30 PPM

- 3: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
- 4: Oscillator performance should be verified when migrating between devices (including PIC16C62A to PIC16C62B and PIC16C72 to PIC16C72A)

10.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 <u>Reset</u>

The PIC16CXXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged by any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the \overline{MCLR} and WDT Reset, on \overline{MCLR} reset during SLEEP, and on Brown-out Reset (BOR). They are not affected by a WDT Wake-up from SLEEP, which is viewed as the resumption of normal operation. The \overline{TO} and \overline{PD} bits are set or cleared depending on the reset situation, as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will ignore small pulses. However, a valid $\overline{\text{MCLR}}$ pulse must meet the minimum pulse width (TmcL, Specification #30).

No internal reset source (WDT, BOR, POR) will drive the $\overline{\text{MCLR}}$ pin low.

10.10 Interrupts

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables or disables all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt flag bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit, which reenables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register. The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles, depending on when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

FIGURE 10-7: INTERRUPT LOGIC

11.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 11-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 11-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 11-1 OPCODE FIELD DESCRIPTIONS

Field	Description						
f	Register file address (0x00 to 0x7F)						
W	Working register (accumulator)						
b	Bit address within an 8-bit file register						
k	Literal field, constant data or label						
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.						
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1						
PC	Program Counter						
TO	Time-out bit						
PD	Power-down bit						
Z	Zero bit						
DC	Digit Carry bit						
С	Carry bit						

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 11-2 lists the instructions recognized by the MPASM assembler.

Figure 11-1 shows the general formats that the instructions can have.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 11-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB™ IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

- The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:
- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

13.1 DC Characteristics: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended)

Standard Operating Conditions (unless otherwise stated)								
DC CHARACTERISTICS			Operating temperature 0° C < TA < $\pm 70^{\circ}$ C for commercial					
			Operating temperature $U \cup \subseteq IA \subseteq +/U \cup IOF CONTINEFCIAL40°C \leq TA \leq +95°C for industrial$					
				-40 C	$<$ \leq TA \leq +05 C for extended			
_						-+0 0		
Param No.	Sym	Characteristic	Min	Typ†	Мах	Units	Conditions	
D001	Vdd	Supply Voltage	4.0	-	5.5	V	XT, RC and LP osc mode	
D001A			4.5	-	5.5	V	HS osc mode	
			VBOR*	-	5.5	V	BOR enabled (Note 7)	
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details	
D004*	SVDD	VDD Rise Rate to	0.05	-	-	V/ms	PWRT enabled (PWRTE bit clear)	
D004A*		ensure internal	TBD	-	-		PWRT disabled (PWRTE bit set)	
		Power-on Reset signal					See section on Power-on Reset for details	
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set	
D010	IDD	Supply Current	-	2.7	5	mA	XT, RC osc modes	
		(Note 2, 5)					FOSC = 4 MHz, $VDD = 5.5V$ (Note 4)	
D013			_	10	20	mΑ	HS osc mode	
2010					20	1100	Fosc = 20 MHz, VDD = 5.5 V	
D020	IPD	Power-down Current	-	10.5	42	uА	$V_{DD} = 4.0V$, WDT enabled40°C to +85°C	
		(Note 3, 5)	-	1.5	16	μA	$V_{DD} = 4.0V$, WDT disabled, 0°C to +70°C	
D021		(, - ,	-	1.5	19	μA	$V_{DD} = 4.0V$, WDT disabled40°C to +85°C	
D021B			-	2.5	19	μΑ	VDD = 4.0V, WDT disabled, -40°C to +125°C	
		Module Differential						
		Current (Note 6)						
D022*	$\Delta IWDT$	Watchdog Timer	-	6.0	20	μA	WDTE BIT SET, VDD = 4.0V	
D022A*	Δ IBOR	Brown-out Reset	-	TBD	200	μA	BODEN bit set, VDD = 5.0V	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.

13.4 AC (Timing) Characteristics

13.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. TCC:ST	(I ² C specifications only)			
2. TppS		4. Ts	(I ² C specifications only)			
Т						
F	Frequency	Т	Time			
Lowercase letters (pp) and their meanings:						
рр						
сс	CCP1	OSC	OSC1			
ck	CLKOUT	rd	RD			
CS	CS	rw	RD or WR			
di	SDI	SC	SCK			
do	SDO	SS	SS			
dt	Data in	tO	TOCKI			
io	I/O port	t1	T1CKI			
mc	MCLR	wr	WR			
Uppercase letters and their meanings:						
S						
F	Fall	Р	Period			
н	High	R	Rise			
I	Invalid (Hi-impedance)	V	Valid			
L	Low	Z	Hi-impedance			
I ² C only						
AA	output access	High	High			
BUF	Bus free	Low	Low			
TCC:ST (I ²	TCC:ST (I ² C specifications only)					
CC						
HD	Hold	SU	Setup			
ST						
DAT	DATA input hold	STO	STOP condition			
STA	START condition					

FIGURE 13-8: BROWN-OUT RESET TIMING

TABLE 13-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.							
30	TmcL	MCLR Pulse Width (low)	2	—		μS	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillator Start-up Timer Period	_	1024 Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset		_	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μS	$VDD \le BVDD (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769270

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.