

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

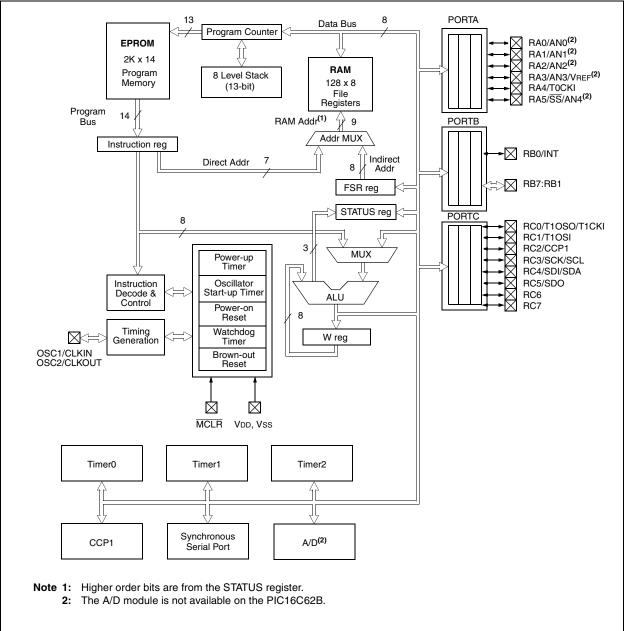
Details

E·XFI

2000	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc72at-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.0 DEVICE OVERVIEW

This document contains device-specific information. Additional information may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

There are two devices (PIC16C62B, PIC16C72A) covered by this datasheet. The PIC16C62B does not have the A/D module implemented.

Figure 1-1 is the block diagram for both devices. The pinouts are listed in Table 1-1.

© 1998-2013 Microchip Technology Inc.

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function	TRISC Override
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input	Yes
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input	Yes
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output	No
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.	No
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).	No
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output	No
RC6	bit6	ST	Input/output port pin	No
RC7	bit7	ST	Input/output port pin	No

Legend: ST = Schmitt Trigger input

TABLE 3-6SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC I	Data Direct	ion Regist	er					1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

NOTES:

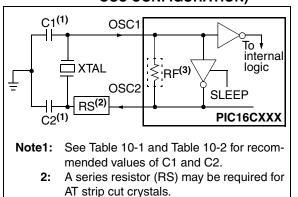
REGISTER 8-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit	
bit7			-				bitO	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset	
bit 7:	<pre>WCOL: Write Collision Detect bit 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision</pre>								
bit 6:	SSPOV: R	eceive Ov	erflow Ind	cator bit					
	the data in if only trar	byte is reco SSPSR is smitting d reception (lost. Ove ata, to ave	rflow can o oid setting	nly occur i overflow.	in slave mo In master	ode. The use operation, t	evious data. In case of overflow, er must read the SSPBUF, even he overflow bit is not set since SUF register.	
	In l^2 <u>C mode</u> 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in transmit mode. SSPOV must be cleared in software in either mode. 0 = No overflow								
bit 5:	SSPEN: S	ynchronou	is Serial F	ort Enable	bit				
	In SPI mode 1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins 0 = Disables serial port and configures these pins as I/O port pins								
	In I^2C mode 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures these pins as I/O port pins In both modes, when enabled, these pins must be properly configured as input or output.								
bit 4:	CKP : Clock Polarity Select bit In SPI mode 1 = Idle state for clock is a high level $0 = Idle state for clock is a low level In I2C mode SCK release control 1 = Enable clock0 = Holds clock low (clock stretch)$								
bit 3-0:	$0001 = SF$ $0010 = SF$ $0100 = SF$ $0101 = SF$ $0110 = I^{2}C$ $0111 = I^{2}C$ $1011 = I^{2}C$ $1110 = I^{2}C$	PI master of PI master of PI master of PI master of PI slave mo C slave mo C slave mo C slave mo C slave mo C slave mo C slave mo	operation, operation, operation, ode, clock ode, clock de, 7-bit a de, 10-bit controlled de, 7-bit a	clock = Fo clock = Fo clock = Fo clock = Th = SCK pin address address ddress ddress	ISC/4 ISC/16 ISC/64 IR2 outpu I. SS pin c I. SS pin c peration (s th start an	t/2 ontrol ena ontrol disa slave idle) d stop bit i			

Г

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES


The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

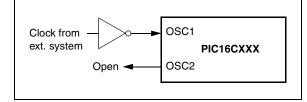

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can use an external clock source to drive the OSC1/CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

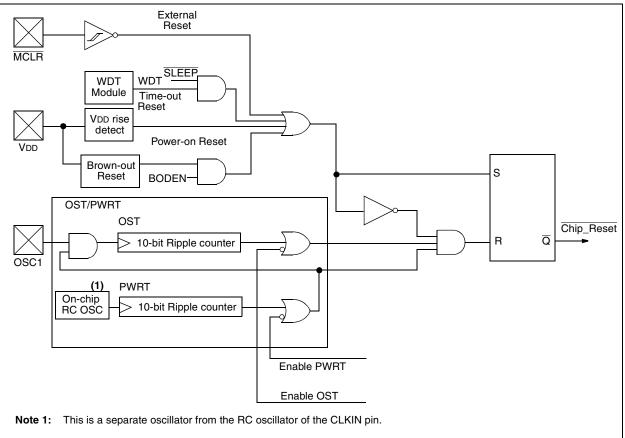
Ranges Tested:

Ranges lested:						
Mode	Freq	OSC1	0\$C2			
XT	455 kHz	68 - 100 pF	68 - 100 pF			
	2.0 MHz	15 - 68 pF 🛛 🤇	15 - 68 pF			
	4.0 MHz	15 - 68 pF	∖15, - 68 pF			
HS	8.0 MHz	10 - 68(pF	े10 - 68 pF			
	16.0 MHz	10,-22,0F	10 - 22 pF			
	These values are for design guidance only. See notes at bottom of page.					
Resonator	Resonators Used:					
455 kHz	Panasonie E	FO-A455K04B	± 0.3%			
2.0 MHz	Wurata Erie CSA2.00MG ± 0.5%					
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MAHZ	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie (CSA16.00MX	$\pm 0.5\%$			
Resona	ators did not hav	ve built-in capacito	ors.			

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	200 kHz	47-68 pF	47-68 pF		
	1 MHz	15 pF 🔍	✓ 15 pF 15 pF		
	4 MHz	15 pF 🕟	15 pF		
HS	4 MHz	15 pt	✓ 15 pF		
	8 MHz	15-33 pE>	15-33 pF		
	20 MHz	(15-33 pF	15-33 pF		
	These values are for design guidance only. See notes at bottom of page.				
	Crystals Used				
32 kHz	Epson C-001R32.768K-A ± 20 PPM				
200 kt/2	STD XTL 200.000KHz ± 20 PPM				
1 MHz	ECS ECS-10-13-1 ± 50 PPM				
4 MHz	ECS ECS-4	40-20-1	± 50 PPM		
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM		

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

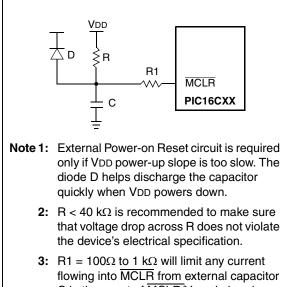

EPSON CA-301 20.000M-C

20 MHz

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

± 30 PPM

- **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
- 4: Oscillator performance should be verified when migrating between devices (including PIC16C62A to PIC16C62B and PIC16C72 to PIC16C72A)


FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

10.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (SVDD, parameter D004). For a slow rise time, see Figure 10-6.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions.

FIGURE 10-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

R1 = 100Ω to 1 kΩ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

10.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (TPWRT, parameter #33) from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameters for details.

10.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (TOST, parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

Note: The OST delay may not occur when the device wakes from SLEEP.

10.7 Brown-Out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-Out Reset circuit. If VPP falls below Vbor (parameter #35, about 100μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a reset may not occur.

Once the brown-out occurs, the device will remain in brown-out reset until VDD rises above VBOR. The power-up timer then keeps the device in reset for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the brown-out reset process will restart when VDD rises above VBOR with the power-up timer reset. The power-up timer is always enabled when the brown-out reset circuit is enabled, regardless of the state of the PWRT configuration bit.

TABLE 10-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS					
Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	62B	72A	XXXX XXXX	uuuu uuuu	սսսս սսսս
INDF	62B	72A	N/A	N/A	N/A
TMR0	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	62B	72A	0000h	0000h	PC + 1 ⁽²⁾
STATUS	62B	72A	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	62B	72A	0x 0000	0u 0000	uu uuuu
PORTB ⁽⁵⁾	62B	72A	xxxx xxxx	սսսս սսսս	սսսս սսսս
PORTC ⁽⁵⁾	62B	72A	xxxx xxxx	սսսս սսսս	uuuu uuuu
PCLATH	62B	72A	0 0000	0 0000	u uuuu
INTCON	62B	72A	0000 000x	0000 000u	uuuu uuuu (1)
	62B	72A	0000	0000	uuuu (1)
PIR1	62B	72A	-0 0000	-0 0000	-u uuuu (1)
TMR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	62B	72A	00 0000	uu uuuu	uu uuuu
TMR2	62B	72A	0000 0000	0000 0000	uuuu uuuu
T2CON	62B	72A	-000 0000	-000 0000	-uuu uuuu
SSPBUF	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	62B	72A	0000 0000	0000 0000	uuuu uuuu
CCPR1L	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	62B	72A	00 0000	00 0000	uu uuuu
ADRES	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	62B	72A	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	62B	72A	1111 1111	1111 1111	uuuu uuuu
TRISA	62B	72A	11 1111	11 1111	uu uuuu
TRISB	62B	72A	1111 1111	1111 1111	uuuu uuuu
TRISC	62B	72A	1111 1111	1111 1111	uuuu uuuu
	62B	72A	0000	0000	uuuu
PIE1	62B	72A	-0 0000	-0 0000	-u uuuu
PCON	62B	72A	0q	uq	uq
PR2	62B	72A	1111 1111	1111 1111	1111 1111
SSPADD	62B	72A	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	62B	72A	0000 0000	0000 0000	սսսս սսսս
ADCON1	62B	72A	000	000	uuu

TABLE 10-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.

4: On any device reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are comple- mented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is executed instead making it a $2Tcy$ instruction.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a $2Tcy$ instruction.

PIC16C62B/72A

IORLW	Inclusive OR Literal with W					
Syntax:	[label] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.					

MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.					

IORWF	Inclusive OR W with f					
Syntax:	[label] IORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB™ IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

- The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:
- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

13.3 DC Characteristics:

cs: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended) PIC16LC62B/72A-04 (Commercial, Industrial)

DC CHA	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
		Input Low Voltage							
	VIL	I/O ports							
D030 D030A		with TTL buffer	Vss Vss	-	0.15Vdd 0.8V	V V	For entire VDD range $4.5V \le VDD \le 5.5V$		
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V			
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2Vdd	V			
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3Vdd	V	Note1		
		Input High Voltage							
	Vін	I/O ports		-					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25Vd D + 0.8V	-	Vdd	V	For entire VDD range		
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	v	For entire VDD range		
D042		MCLR	0.8Vdd	-	Vdd	V			
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	Note1		
D043		OSC1 (in RC mode)	0.9Vdd	-	Vdd	V			
		Input Leakage Current (Notes 2, 3)							
D060	lı∟	I/O ports	-	-	±1	μA	$\label{eq:Vss} \begin{split} &Vss \leq V PIN \leq V DD, \\ &Pin \ at \ hi\ impedance \end{split}$		
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc modes		
D070	IPURB	PORTB weak pull-up current	50	250	400	μA	VDD = 5V, VPIN = VSS		
D080	Vol	Output Low Voltage I/O ports	-	-	0.6	v	IOL = 8.5 mA, VDD = 4.5 V, -40°C to +85°C		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

3: Negative current is defined as current sourced by the pin.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

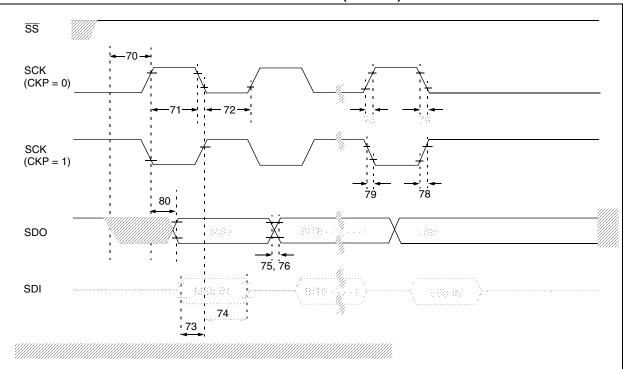
DC CHA	ARACTE	RISTICS	$\begin{array}{rl} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C & \leq Ta \leq +70^{\circ}C & \mbox{for commercial} \\ & -40^{\circ}C & \leq Ta \leq +85^{\circ}C & \mbox{for industrial} \\ & -40^{\circ}C & \leq Ta \leq +125^{\circ}C & \mbox{for extended} \\ \\ \mbox{Operating voltage VDD range as described in DC spec Section 13.1} \\ \mbox{and Section 13.2} \end{array}$				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKOUT (RC osc mode)	-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
		Output High Voltage					
D090	Vон	I/O ports (Note 3)	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092		OSC2/CLKOUT (RC osc mode)	Vdd-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
			Vdd-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
D150*	Vod	Open-Drain High Voltage	-	-	8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	Cio	All I/O pins and OSC2 (in RC mode)	-	-	50	pF	
D102	Cb	SCL, SDA in I ² C mode	-	-	400	pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

13.4 AC (Timing) Characteristics

13.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2	ppS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	se letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercas	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I	² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 13-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

Param. No.	Symbol	Characterist	Min	Тур†	Max	Units	Conditions	
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns		
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A		(slave mode)	Single Byte	40		_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—		ns	
72A		(slave mode)	Single Byte	40	_	_	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data inpu	100	—	—	ns		
73A	Тв2в	Last clock edge of Byte1 to edge of Byte2	1.5Tcy + 40	—	—	ns	Note 1	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75	TdoR	SDO data output rise time	PIC16CXX	_	10	25	ns	
			PIC16LCXX	_	20	45	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
78	TscR	SCK output rise time	PIC16CXX	_	10	25	ns	
		(master mode)	PIC16LCXX	_	20	45	ns	
79	TscF	SCK output fall time (maste	er mode)	_	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	_	_	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX	_	—	100	ns]

TABLE 13-7: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

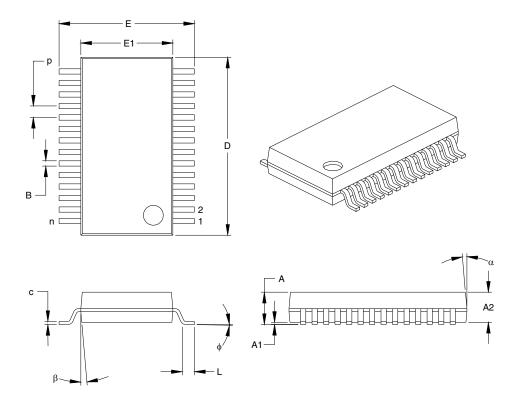
Note 1: Specification 73A is only required if specifications 71A and 72A are used.

© 1998-2013 Microchip Technology Inc.

14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are guaranteed to operate properly only within the specified range.


The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

Graphs and Tables not available at this time.

Data is not available at this time but you may reference the *PIC16C72 Series Data Sheet* (DS39016,) DC and AC characteristic section, which contains data similar to what is expected.

NOTES:

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP) 15.5

Units			INCHES			MILLIMETERS*			
n Limits	MIN	NOM	MAX	MIN	NOM	MAX			
n		28			28				
р		.026			0.66				
A	.068	.073	.078	1.73	1.85	1.98			
A2	.064	.068	.072	1.63	1.73	1.83			
A1	.002	.006	.010	0.05	0.15	0.25			
E	.299	.309	.319	7.59	7.85	8.10			
E1	.201	.207	.212	5.11	5.25	5.38			
D	.396	.402	.407	10.06	10.20	10.34			
L	.022	.030	.037	0.56	0.75	0.94			
С	.004	.007	.010	0.10	0.18	0.25			
¢	0	4	8	0.00	101.60	203.20			
В	.010	.013	.015	0.25	0.32	0.38			
α	0	5	10	0	5	10			
β	0	5	10	0	5	10			
	p A A2 A1 E D L c φ B α	n p A .068 A2 .064 A1 .002 E .299 E1 .201 D .396 L .022 c .004 φ 0 B .010 α 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
Fror	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Application (optional):		
Would you like a reply? Y N		
Dev	ice: 24xx010	Literature Number: DS35008C
Questions:		
1. What are the best features of this document?		
2.	. How does this document meet your hardware and software development needs?	
3.	Do you find the organization of this document easy to follow? If not, why?	
4.	hat additions to the document do you think would enhance the structure and subject?	
5.	What deletions from the document could be made without affecting the overall usefulness?	
6.	Is there any incorrect or misleading information (what and where)?	
7.	How would you improve this document?	