

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	24
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32pg1b100f128gm32-c0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 Introduction

The EFM32PG1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the EFM32PG1 Reference Manual.

A block diagram of the EFM32PG1 family is shown in Figure 3.1 Detailed EFM32PG1 Block Diagram on page 3. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Detailed EFM32PG1 Block Diagram

0×400f0400		1		0xfffffffe
0x400f0000	CRYPTO	` .		
0x40010000				0xe0100000
0x400e6400	PRS		CN44 Device benefic	0xe00fffff
0x400e6000			CM4 Peripherals	010000000000000000000000000000000000000
0x400e5400	RMU			Avdfffffff
0x400e5000				UXUIIIIII
0x400e4400	CMU			0×47000000
0x400e4000				0x46ffffff
0x400e3400	EMU		Peripherals (bit set)	
0x400e3000	LDMA			0x46000000
0x400e2000				0x45ffffff
0x400e1400	FPUEH			
0x400e1000				0x45000000
0x400e0800	MSC		Device even (hit elever)	0x44††††††
0x400e0000			Feripiterals (bit clear)	0×44000000
0x40052400	WDOG0			0x43ffffff
0x40052000			Peripherals (bit-band)	0,,+5111111
0x4004e400	PCNT0			0×42000000
0x4004e000				0x41ffffff
0x4004a400	LEUARTO			
0x4004a000				0×40100000
0x40046400	LETIMERO			0x400fffff
0x40046000		* / / / /	Peripherals	0
0x40042400	RTCC			0x40000000
0x40042000				0X3TTTTTTT
0x4001e400	CRYOTIMER	X / / //		0x22400000
0x4001e000				0x223fffff
0x4001c400	GPCRC		SRAM (bit-band)	
0x4001c000				0×22000000
0x40018800	TIMER1			0x21ffffff
0x40018400	TIMERO			0
0x40018000				0x20008000
0x40010800	USART1		RAMH	0X2000/TTT
0x40010400	USART0		(data space)	0x20007c00
0x40010000				0x20007bff
0x4000c400	12C0		RAMO (data space)	
0x4000c000			(data space)	0×20000000
0x4000b000	GPIO			0x1fffffff
0x4000a000				
0x40006400	IDAC0			
UX40006000			Code.	
0x40002400	ADC0	Y	Code	
0x40002000		/		
0x40000800	ACMP1	1		
0x40000400	ACMP0	V		0×00000000
UX400000000		<i>a</i>		

Figure 3.3. EFM32PG1 Memory Map — Peripherals

3.12 Configuration Summary

The features of the EFM32PG1 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.1. Configuration Summary

Module	Configuration	Pin Connections
USART0	IrDA SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	IrDA I ² S SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1		TIM1_CC[3:0]

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal Resistance	THETA _{JA}	QFN32 Package, 2-Layer PCB, Air velocity = 0 m/s	_	79		°C/W
		QFN32 Package, 2-Layer PCB, Air velocity = 1 m/s	—	62.2	_	°C/W
		QFN32 Package, 2-Layer PCB, Air velocity = 2 m/s	—	54.1	_	°C/W
		QFN32 Package, 4-Layer PCB, Air velocity = 0 m/s	—	32	_	°C/W
		QFN32 Package, 4-Layer PCB, Air velocity = 1 m/s	_	28.1	_	°C/W
		QFN32 Package, 4-Layer PCB, Air velocity = 2 m/s	_	26.9	_	°C/W
		QFN48 Package, 2-Layer PCB, Air velocity = 0 m/s	—	64.5		°C/W
		QFN48 Package, 2-Layer PCB, Air velocity = 1 m/s	—	51.6	_	°C/W
		QFN48 Package, 2-Layer PCB, Air velocity = 2 m/s	_	47.7	_	°C/W
		QFN48 Package, 4-Layer PCB, Air velocity = 0 m/s	_	26.2	_	°C/W
		QFN48 Package, 4-Layer PCB, Air velocity = 1 m/s	—	23.1	_	°C/W
		QFN48 Package, 4-Layer PCB, Air velocity = 2 m/s	—	22.1	_	°C/W

Table 4.3. Thermal Characteristics

4.1.4 DC-DC Converter

Test conditions: L_{DCDC} =4.7 µH (Murata LQH3NPN4R7MM0L), C_{DCDC} =1.0 µF (Murata GRM188R71A105KA61D), $V_{DCDC_{-1}}$ =3.3 V, $V_{DCDC_{-0}}$ =1.8 V, $I_{DCDC_{-LOAD}}$ =50 mA, Heavy Drive configuration, $F_{DCDC_{-LN}}$ =7 MHz, unless otherwise indicated.

Table 4.4. DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{DCDC_I}	Bypass mode, I _{DCDC_LOAD} = 50 mA	1.85	_	V _{VREGVDD_} MAX	V
		Low noise (LN) mode, 1.8 V out- put, I_{DCDC_LOAD} = 100 mA, or Low power (LP) mode, 1.8 V out- put, I_{DCDC_LOAD} = 10 mA	2.4	_	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, I _{DCDC_LOAD} = 200 mA	2.6	_	V _{VREGVDD} MAX	V
Output voltage programma- ble range ¹	V _{DCDC_O}		1.8	_	V _{VREGVDD}	V
Regulation DC Accuracy	ACC _{DC}	Low noise (LN) mode, 1.8 V target output	1.7	_	1.9	V
Regulation Window ²	WIN _{REG}	Low power (LP) mode, LPCMPBIAS ³ = 0, 1.8 V target output, I _{DCDC_LOAD} ≤ 75 µA	1.63	_	2.2	V
		Low power (LP) mode, LPCMPBIAS ³ = 3, 1.8 V target output, I _{DCDC_LOAD} ≤ 10 mA	1.63	_	2.1	V
Steady-state output ripple	V _R		_	3	_	mVpp
Output voltage under/over- shoot	Vov	CCM Mode (LNFORCECCM ³ = 1), Load changes between 0 mA and 100 mA	_	_	150	mV
		DCM Mode (LNFORCECCM ³ = 0), Load changes between 0 mA and 10 mA	_	_	150	mV
		Overshoot during LP to LN CCM/DCM mode transitions com- pared to DC level in LN mode	_	200	_	mV
		Undershoot during BYP/LP to LN CCM (LNFORCECCM ³ = 1) mode transitions compared to DC level in LN mode	_	50	_	mV
		Undershoot during BYP/LP to LN DCM (LNFORCECCM ³ = 0) mode transitions compared to DC level in LN mode	-	125	_	mV
DC line regulation	V _{REG}	Input changes between V _{VREGVDD_MAX} and 2.4 V	_	0.1	-	%
DC load regulation	I _{REG}	Load changes between 0 mA and 100 mA in CCM mode	_	0.1	_	%

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Max load current	ILOAD_MAX	Low noise (LN) mode, Heavy Drive ⁴ , T _{amb} ≤ 85 °C	_	—	200	mA
		Low noise (LN) mode, Heavy Drive ⁴ , T _{amb} > 85 °C	_	—	100	mA
		Low noise (LN) mode, Medium Drive ⁴	_	—	100	mA
		Low noise (LN) mode, Light Drive ⁴	_	—	50	mA
		Low power (LP) mode, LPCMPBIAS ³ = 0	_	—	75	μA
		Low power (LP) mode, LPCMPBIAS ³ = 3	_	—	10	mA
DCDC nominal output ca- pacitor	C _{DCDC}	25% tolerance	1	1	1	μF
DCDC nominal output induc- tor	L _{DCDC}	20% tolerance	4.7	4.7	4.7	μH
Resistance in Bypass mode	R _{BYP}		_	1.2	2.5	Ω

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V_{VREGVDD}

2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits

3. In EMU_DCDCMISCCTRL register

4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.

4.1.5 Current Consumption

4.1.5.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T_{OP} = 25 °C. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T_{OP} = 25 °C. See Figure 5.1 EFM32PG1 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 47.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 Active mode with all periph-	I _{ACTIVE}	38.4 MHz crystal, CPU running while loop from flash ¹	_	127	_	µA/MHz
		38 MHz HFRCO, CPU running Prime from flash	_	88	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	100	105	µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	112	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	102	106	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	222	350	µA/MHz
Current consumption in EM1	Гем1	38.4 MHz crystal ¹	_	61		µA/MHz
als disabled		38 MHz HFRCO	_	35	38	µA/MHz
		26 MHz HFRCO	_	37	41	µA/MHz
		1 MHz HFRCO	_	157	275	µA/MHz
Current consumption in EM2 Deep Sleep mode.	I _{EM2}	Full RAM retention and RTCC running from LFXO	—	3.3	_	μA
		4 kB RAM retention and RTCC running from LFRCO	—	3	6.3	μA
Current consumption in EM3 Stop mode	I _{EM3}	Full RAM retention and CRYO- TIMER running from ULFRCO	—	2.8	6	μA
Current consumption in EM4H Hibernate mode	I _{EM4}	128 byte RAM retention, RTCC running from LFXO	_	1.1	_	μA
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.65	_	μA
		128 byte RAM retention, no RTCC	_	0.65	1.3	μA
Current consumption in EM4S Shutoff mode	I _{EM4S}	no RAM retention, no RTCC	_	0.04	0.11	μΑ
Note:		·				

Table 4.5. Current Consumption 3.3V without DC/DC

1. CMU_HFXOCTRL_LOWPOWER=1

Table 4.19. IDAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Number of Ranges	N _{IDAC_RANGES}		_	4	_	-
Output Current	IIDAC_OUT	RANGSEL ¹ = RANGE0	0.05		1.6	μA
		RANGSEL ¹ = RANGE1	1.6		4.7	μA
		RANGSEL ¹ = RANGE2	0.5	_	16	μA
		RANGSEL ¹ = RANGE3	2	—	64	μA
Linear steps within each range	N _{IDAC_STEPS}		_	32		
Step size	SSIDAC	RANGSEL ¹ = RANGE0	_	50	_	nA
		RANGSEL ¹ = RANGE1	_	100	_	nA
		RANGSEL ¹ = RANGE2	_	500	_	nA
		RANGSEL ¹ = RANGE3	_	2	_	μA
Total Accuracy, STEPSEL ¹ = 0x10	ACCIDAC	EM0 or EM1, AVDD=3.3 V, T = 25 °C	-2		2	%
		EM0 or EM1	-18	—	22	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-2	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-1.7	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.8	_	%
		EM2 or EM3, Source mode, RANGSEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	—	-0.5	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE0, AVDD=3.3 V, T = 25 °C	_	-0.7	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE1, AVDD=3.3 V, T = 25 °C	_	-0.6	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE2, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%
		EM2 or EM3, Sink mode, RANG- SEL ¹ = RANGE3, AVDD=3.3 V, T = 25 °C	_	-0.5	_	%
Start up time	t _{IDAC_SU}	Output within 1% of steady state value	_	5	_	μs

4.1.15 I2C

I2C Standard-mode (Sm)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	100	kHz
SCL clock low time	t _{LOW}		4.7	—	—	μs
SCL clock high time	tнigн		4	_	—	μs
SDA set-up time	t _{SU,DAT}		250	_	_	ns
SDA hold time ³	t _{HD,DAT}		100	—	3450	ns
Repeated START condition set-up time	t _{SU,STA}		4.7	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}		4	_	_	μs
STOP condition set-up time	tsu,sto		4	_	—	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7	_	—	μs

Table 4.21. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW})

I2C Fast-mode (Fm)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	400	kHz
SCL clock low time	t _{LOW}		1.3	—	_	μs
SCL clock high time	t _{HIGH}		0.6	—	_	μs
SDA set-up time	t _{SU,DAT}		100	_	_	ns
SDA hold time ³	t _{HD,DAT}		100	_	900	ns
Repeated START condition set-up time	t _{SU,STA}		0.6	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}		0.6			μs
STOP condition set-up time	t _{SU,STO}		0.6	—	_	μs
Bus free time between a STOP and START condition	t _{BUF}		1.3	—	—	μs

Table 4.22. I2C Fast-mode (Fm)¹

Note:

1. For CLHR set to 1 in the I2Cn_CTRL register

2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW})

I2C Fast-mode Plus (Fm+)

Table 4.23	I2C Fast-mode Plus	(Fm+)	1
1 4010 4.23.	120 I ast-moue Flus	(1.111.1)	,

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	_	1000	kHz
SCL clock low time	t _{LOW}		0.5	—	_	μs
SCL clock high time	t _{HIGH}		0.26	_	_	μs
SDA set-up time	t _{SU,DAT}		50	_	_	ns
SDA hold time	t _{HD,DAT}		100	_	_	ns
Repeated START condition set-up time	t _{SU,STA}		0.26	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}		0.26			μs
STOP condition set-up time	t _{SU,STO}		0.26		_	μs
Bus free time between a STOP and START condition	t _{BUF}		0.5	_		μs

Note:

1. For CLHR set to 0 or 1 in the I2Cn_CTRL register

2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 1.0 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

Figure 4.6. DC-DC Converter Typical Performance Characteristics

Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz

Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz

QFN	48 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other					
4	PF3	BUSAY BUSBX	TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LE- TIM0_OUT0 #27 LE- TIM0_OUT0 #27 LE- TIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26	US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26	CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI #0					
5	PF4	BUSAX BUSBY	TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDT11 #24 TIM0_CDT12 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LE- TIM0_OUT0 #28 LE- TIM0_OUT0 #28 LE- TIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27	US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27	PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28					
6	PF5	BUSAY BUSBX	TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 LE- TIM0_OUT0 #29 LE- TIM0_OUT0 #29 LE- TIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28	US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 US1_TX #29 US1_RX #28 US1_CLK #27 US1_CS #26 US1_CTS #25 US1_RTS #24 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28	PRS_CH0 #5 PRS_CH1 #4 PRS_CH2 #3 PRS_CH3 #2 ACMP0_O #29 ACMP1_O #29					
7	PF6	BUSAX BUSBY	TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LE- TIM0_OUT0 #30 LE- TIM0_OUT0 #30 PCNT0_S0IN #30 PCNT0_S1IN #29	US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS #27 US1_CTS #26 US1_RTS #25 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29	CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30					

EFM32PG1 Data Sheet Pin Definitions

QFN	48 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other					
32	PB12	BUSCX BUSDY	TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LE- TIM0_OUT0 #7 LE- TIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6	US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6	PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7					
33	PB13	BUSCY BUSDX	TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LE- TIM0_OUT0 #8 LE- TIM0_OUT0 #8 LE- TIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7	US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7	PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9					
34	AVDD_0	Analog power supply 0.								
35	PB14	LFXTAL_N BUSCX BUSDY	TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LE- TIM0_OUT0 #9 LE- TIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8	US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8	CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9					
36	PB15	LFXTAL_P BUSCY BUSDX	TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LE- TIM0_OUT0 #10 LE- TIM0_OUT0 #10 LE- TIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9	US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9	CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10					

6.2.1 EFM32PG1 QFN32 without DC-DC GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PA1	PA0
Port B	PB15	PB14	PB13 (5V)	PB12 (5V)	PB11 (5V)	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	PC11 (5V)	PC10 (5V)	PC9 (5V)	PC8 (5V)	PC7 (5V)	-	-	-	-	-	-	-
Port D	PD15 (5V)	PD14 (5V)	PD13 (5V)	PD12 (5V)	PD11 (5V)	PD10 (5V)	PD9 (5V)	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	PF4 (5V)	PF3 (5V)	PF2 (5V)	PF1 (5V)	PF0 (5V)

Table 6.4. QFN32 without DC-DC GPIO Pinout

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Figure 6.3. EFM32PG1 QFN32 with DC-DC Pinout

6.3.1 EFM32PG1 QFN32 with DC-DC GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PA1	PA0
Port B	PB15	PB14	PB13 (5V)	PB12 (5V)	PB11 (5V)	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	PC11 (5V)	PC10 (5V)	-	-	-	-	-	-	-	-	-	-
Port D	PD15 (5V)	PD14 (5V)	PD13 (5V)	PD12 (5V)	PD11 (5V)	PD10 (5V)	PD9 (5V)	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	PF3 (5V)	PF2 (5V)	PF1 (5V)	PF0 (5V)

Table 6.6. QFN32 with DC-DC GPIO Pinout

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Alternate									
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
	0: PF1								Debug-interface Serial Wire data in- put / output and JTAG Test Mode Select.
DBG_SWDIOTMS									Note that this func- tion is enabled to the pin out of reset, and has a built-in pull up.
	0. 052								Debug-interface Serial Wire viewer Output.
DBG_SWO	0. PP2 1: PB13 2: PD15 3: PC11								Note that this func- tion is not enabled after reset, and must be enabled by software to be used.
	0. DE3								Debug-interface JTAG Test Data In.
DBG_TDI	0.110								Note that this func- tion is enabled to pin out of reset, and has a built-in pull up.
DBG TDO	0: PF2								Debug-interface JTAG Test Data Out.
									Note that this func- tion is enabled to pin out of reset.
GPIO_EM4WU0	0: PF2								Pin can be used to wake the system up from EM4
GPIO_EM4WU1	0: PF7								Pin can be used to wake the system up from EM4
GPIO_EM4WU4	0: PD14								Pin can be used to wake the system up from EM4
GPIO_EM4WU8	0: PA3								Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PB13								Pin can be used to wake the system up from EM4

Alternate									
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
TIM0_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 0 Compli- mentary Dead Time Insertion channel 0.
TIM0_CDTI1	0: PA4 1: PA5 2: PB11 3: PB12	4: PB13 5: PB14 6: PB15 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11 13: PD9 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	Timer 0 Compli- mentary Dead Time Insertion channel 1.
TIM0_CDTI2	0: PA5 1: PB11 2: PB12 3: PB13	4: PB14 5: PB15 6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11	12: PD9 13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	Timer 0 Compli- mentary Dead Time Insertion channel 2.
TIM1_CC0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 1 Capture Compare input / output channel 2.
TIM1_CC3	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 1 Capture Compare input / output channel 3.
US0_CLK	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	USART0 clock in- put / output.
US0_CS	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	USART0 chip se- lect input / output.
US0_CTS	0: PA4 1: PA5 2: PB11 3: PB12	4: PB13 5: PB14 6: PB15 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11 13: PD9 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	USART0 Clear To Send hardware flow control input.
US0_RTS	0: PA5 1: PB11 2: PB12 3: PB13	4: PB14 5: PB15 6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11	12: PD9 13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	USART0 Request To Send hardware flow control output.

8. QFN32 Package Specifications

8.1 QFN32 Package Dimensions

Figure 8.1. QFN32 Package Drawing

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Supp

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com