

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	24
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32pg1b100f256gm32-c0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM32PG1 highlighted features are listed below.

ARM Cortex-M4 CPU platform

- · High performance 32-bit processor @ up to 40 MHz
- DSP instruction support and Floating Point Unit
- Memory Protection Unit
- Wake-up Interrupt Controller
- Flexible Energy Management System
 - + 63 $\mu\text{A/MHz}$ in Energy Mode 0 (EM0)
 - 2.5 μA EM2 DeepSleep current (RTCC running with state and RAM retention)
 - 0.58 µA EM4H Hibernate Mode (128 byte RAM retention)
- Up to 256 kB flash program memory
- 32 kB RAM data memory
- Up to 32 General Purpose I/O Pins
 - Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - Configurable peripheral I/O locations
 - Asynchronous external interrupts
 - Output state retention and wake-up from Shutoff Mode

Hardware Cryptography

- AES 128/256-bit keys
- ECC B/K163, B/K233, P192, P224, P256
- SHA-1 and SHA-2 (SHA-224 and SHA-256)
- Timers/Counters
 - 2× 16-bit Timer/Counter
 - 3 + 4 Compare/Capture/PWM channels
 - 1× 32-bit Real Time Counter and Calendar
 - 1× 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
 - 16-bit Low Energy Timer for waveform generation
 - 16-bit Pulse Counter with asynchronous operation
 - Watchdog Timer with dedicated RC oscillator

- 8 Channel DMA Controller
- 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Communication Interfaces
 - 2× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
 - Triple buffered full/half-duplex operation with flow control
 - Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - Address recognition in EM3 Stop Mode
- Ultra Low-Power Precision Analog Peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter
 - 2× Analog Comparator
 - Digital to Analog Current Converter
 - Up to 32 pins connected to analog channels (APORT) shared between Analog Comparators, ADC, and IDAC
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 1-pin Serial Wire Viewer
 - JTAG (programming only)

Wide Operating Range

- 1.85 V to 3.8 V single power supply
- Integrated dc-dc, down to 1.8 V output with up to 200 mA load current for system
- Standard (-40 $^\circ C$ to 85 $^\circ C$ $T_{AMB})$ and Extended (-40 $^\circ C$ to 125 $^\circ C$ $T_J)$ temperature grades available
- Packages
 - 7 mm × 7 mm QFN48
 - 5 mm × 5 mm QFN32
- Pre-Programmed UART Bootloader
- Full Software Support
 - CMSIS register definitions
 - Low-power Hardware Abstraction Layer (HAL)
 - Portable software components
 - Third-party middleware
 - Free and available example code

2. Ordering Information

Ordering Code	Flash (kB)	RAM (kB)	DC-DC Converter	GPIO	Package	Temp Range
EFM32PG1B200F256GM48-C0	256	32	Yes	32	QFN48	-40 to +85
EFM32PG1B200F256IM48-C0	256	32	Yes	32	QFN48	-40 to +125
EFM32PG1B200F128GM48-C0	128	32	Yes	32	QFN48	-40 to +85
EFM32PG1B200F256GM32-C0	256	32	Yes	20	QFN32	-40 to +85
EFM32PG1B200F256IM32-C0	256	32	Yes	20	QFN32	-40 to +125
EFM32PG1B200F128GM32-C0	128	32	Yes	20	QFN32	-40 to +85
EFM32PG1B100F256GM32-C0	256	32	No	24	QFN32	-40 to +85
EFM32PG1B100F256IM32-C0	256	32	No	24	QFN32	-40 to +125
EFM32PG1B100F128GM32-C0	128	32	No	24	QFN32	-40 to +85

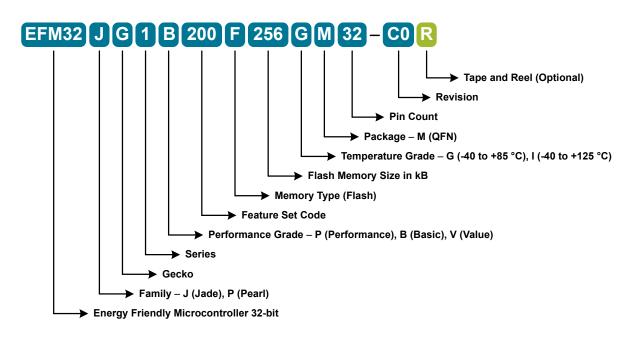


Figure 2.1. OPN Decoder

3.6.3 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.6.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

3.7 Security Features

3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application.

3.7.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFM32PG1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2^m), and SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.

Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.

The CRYPTO module allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.

3.8 Analog

3.8.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.8.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.11 Memory Map

The EFM32PG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

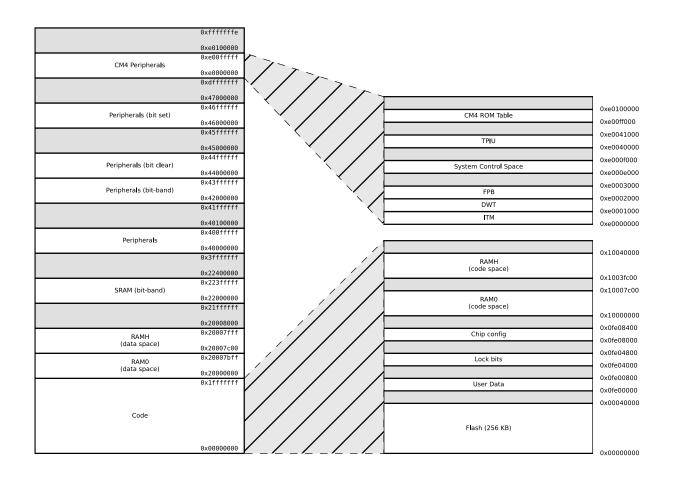


Figure 3.2. EFM32PG1 Memory Map — Core Peripherals and Code Space

г		λ.		0xfffffffe
0x400f0400	CRYPTO	4 \		
0x400f0000		1 2		0xe0100000
0x400e6400	PRS			0xe00fffff
0x400e6000			CM4 Peripherals	
0x400e5400	RMU			0xe0000000
0x400e5000	hito			0xdfffffff
0x400e4400	CMU			0×47000000
0x400e4000	Child			0x46ffffff
0x400e3400	EMU		Peripherals (bit set)	0,40111111
0x400e3000	LDMA		renpherals (bit set)	0×46000000
0x400e2000	LUMA			0x45ffffff
0x400e1400	FPUEH			
0x400e1000	FFOEH			0×45000000
0x400e0800	MSC			0x44ffffff
0x400e0000	MBC		Peripherals (bit clear)	
0x40052400	WDOG0			0×44000000
0x40052000	WDOGU			0x43ffffff
0x4004e400	PCNT0		Peripherals (bit-band)	0×42000000
0x4004e000	PCNTU			0x41ffffff
0x4004a400	LEUART0			024111111
0x4004a000	LEUARIO			0×40100000
0x40046400	I STREDO			0x400fffff
0x40046000	LETIMERO	/ / / / /	Peripherals	
0x40042400	0700			0×40000000
0x40042000	RTCC			0x3fffffff
0x4001e400	ODVOTINED			
0x4001e000	CRYOTIMER			0x22400000
0x4001c400	00000		SRAM (bit-band)	0x223fffff
0x4001c000	GPCRC		SRAM (bit-band)	0×22000000
0×40018800	211/204			0x21ffffff
0x40018400	TIMER1			0,21111111
0×40018000	TIMER0			0×20008000
0×40010800			54441	0x20007fff
0x40010400	USART1		RAMH (data space)	
0×40010000	USART0		(uutu spuce)	0x20007c00
0x4000c400			RAMO	0x20007bff
0x4000c000	12C0		(data space)	
0x4000b000				0×20000000
0x4000a000	GPIO			0x1fffffff
0x40006400				
0x40006000	IDAC0			
0x40002400			Code	
0x40002000	ADC0	r /		
0x40000800				
0x40000400	ACMP1	/		
0×40000000	ACMP0			0×00000000

Figure 3.3. EFM32PG1 Memory Map — Peripherals

3.12 Configuration Summary

The features of the EFM32PG1 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.1. Configuration Summary

Module	Configuration	Pin Connections
USART0	IrDA SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	IrDA I ² S SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1		TIM1_CC[3:0]

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD must be the highest voltage in the system
- VREGVDD = AVDD
- DVDD ≤ AVDD
- IOVDD ≤ AVDD

4.1.2.1 General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating temperature range	T _{OP}	-G temperature grade, Ambient Temperature	-40	25	85	°C
		-I temperature grade, Junction Temperature	-40	25	125	°C
AVDD Supply voltage ¹	V _{AVDD}		1.85	3.3	3.8	V
VREGVDD Operating supply voltage ^{1 2}	V _{VREGVDD}	DCDC in regulation	2.4	3.3	3.8	V
		DCDC in bypass, 50mA load	1.85	3.3	3.8	V
		DCDC not in use. DVDD external- ly shorted to VREGVDD	1.85	3.3	3.8	V
VREGVDD Current	I _{VREGVDD}	DCDC in bypass, T _{amb} ≤ 85 °C	_	_	200	mA
		DCDC in bypass, T _{amb} > 85 °C	_	_	100	mA
DVDD Operating supply volt- age	V _{DVDD}		1.62	_	V _{VREGVDD}	V
IOVDD Operating supply voltage	VIOVDD		1.62	-	V _{VREGVDD}	V
Difference between AVDD and VREGVDD, ABS(AVDD- VREGVDD)	dV _{DD}			_	0.1	V
HFCLK frequency	f _{CORE}	0 wait-states (MODE = WS0) ³	_	_	26	MHz
		1 wait-states (MODE = WS1) ³	_	_	40	MHz

Table 4.2. General Operating Conditions

Note:

1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.

2. The minimum voltage required in bypass mode is calculated using R_{BYP} from the DCDC specification table. Requirements for other loads can be calculated as V_{DVDD_min}+I_{LOAD} * R_{BYP_max}

3. In MSC_READCTRL register

4.1.6 Wake up times

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Wake up from EM2 Deep	t _{EM2_WU}	Code execution from flash	_	10.7	_	μs
Sleep		Code execution from RAM		3	_	μs
Wakeup time from EM1 Sleep	t _{EM1_WU}	Executing from flash	_	3	_	AHB Clocks
		Executing from RAM	_	3	-	AHB Clocks
Wake up from EM3 Stop	t _{EM3_WU}	Executing from flash	_	10.7	_	μs
		Executing from RAM	_	3	_	μs
Wake up from EM4H Hiber- nate ¹	t _{EM4H_WU}	Executing from flash	_	60	-	μs
Wake up from EM4S Shut- off ¹	t _{EM4S_WU}			290	_	μs
Note: 1. Time from wakeup reque	est until first inst	ruction is executed. Wakeup results in	device reset.	1	1	

Table 4.8. Wake up times

4.1.7 Brown Out Detector

Table 4.9. Brown Out Detector

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
DVDDBOD threshold	V _{DVDDBOD}	DVDD rising	_	_	1.62	V
		DVDD falling	1.35	—	—	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		_	24	_	mV
DVDD response time	t _{DVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4	-	μs
AVDD BOD threshold	VAVDDBOD	AVDD rising	_	_	1.85	V
		AVDD falling	1.62	—	_	V
AVDD BOD hysteresis	V _{AVDDBOD_HYST}		_	21	_	mV
AVDD response time	tavddbod_delay	Supply drops at 0.1V/µs rate	_	2.4	—	μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	_	_	1.7	V
		AVDD falling	1.45	—	_	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}		_	46	—	mV
EM4 response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate		300	_	μs

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Comparator delay ⁴	t _{ACMPDELAY}	$BIASPROG^2 = 1$, $FULLBIAS^2 = 0$	_	30	_	μs
		$BIASPROG^{2} = 0x10, FULLBIAS^{2} = 0$	_	3.7	_	μs
		BIASPROG ² = 0x20, FULLBIAS ² = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ² =0x10, FULLBIAS ² = 1	-35	_	35	mV
Reference Voltage	V _{ACMPREF}	Internal 1.25 V reference	1	1.25	1.47	V
		Internal 2.5 V reference	2	2.5	2.8	V
Capacitive Sense Internal Resistance	R _{CSRES}	CSRESSEL ⁵ = 0	_	inf	_	kΩ
Resistance		CSRESSEL ⁵ = 1		15	_	kΩ
		CSRESSEL ⁵ = 2	_	27	_	kΩ
		CSRESSEL ⁵ = 3	_	39	_	kΩ
		CSRESSEL ⁵ = 4	_	51	_	kΩ
		CSRESSEL ⁵ = 5	_	102	_	kΩ
		CSRESSEL ⁵ = 6	_	164	_	kΩ
		CSRESSEL ⁵ = 7	_	239	_	kΩ

Note:

1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD

2. In ACMPn_CTRL register

3. In ACMPn_HYSTERESIS register

4.±100 mV differential drive

5. In ACMPn_INPUTSEL register

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:

$I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$

 $\mathbf{I}_{\text{ACMPREF}}$ is zero if an external voltage reference is used.

4.1.15 I2C

I2C Standard-mode (Sm)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	100	kHz
SCL clock low time	t _{LOW}		4.7	—	_	μs
SCL clock high time	t _{HIGH}		4	_	_	μs
SDA set-up time	t _{SU,DAT}		250	_	_	ns
SDA hold time ³	t _{HD,DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU,STA}		4.7	_		μs
(Repeated) START condition hold time	t _{HD,STA}		4	_	_	μs
STOP condition set-up time	t _{SU,STO}		4	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7	_	_	μs

Table 4.21. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW})

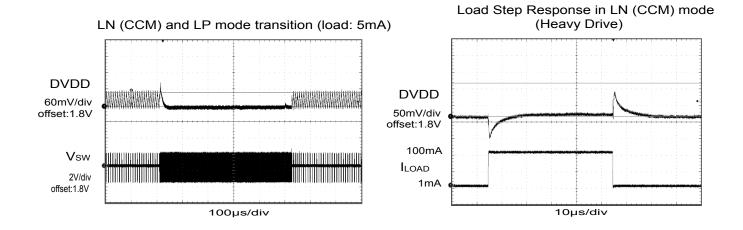


Figure 4.7. DC-DC Converter Transition Waveforms

5. Typical Connection Diagrams

5.1 Power

Typical power supply connections for direct supply, without using the internal dc-dc converter, are shown in Figure 5.1 EFM32PG1 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 47.

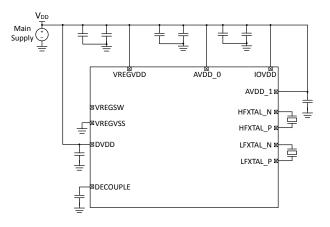


Figure 5.1. EFM32PG1 Typical Application Circuit, Direct Supply, No DC-DC Converter

A typical application circuit using the internal dc-dc converter is shown in Figure 5.2 EFM32PG1 Typical Application Circuit Using the DC-DC Converter on page 47. The MCU operates from the dc-dc converter supply.

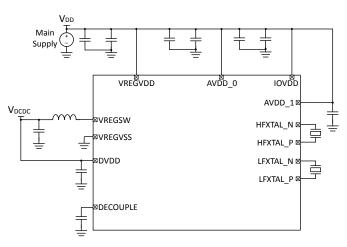


Figure 5.2. EFM32PG1 Typical Application Circuit Using the DC-DC Converter

5.2 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).

QFN	48 Pin# and Name		Pin Alternate Functionality / Description				
Pin #	Pin Name	Analog	Timers	Timers Communication			
0	RFVSS	Radio Ground					
1	PF0	BUSAX BUSBY	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LE- TIM0_OUT0 #24 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK #0 BOOT_TX		
2	PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LE- TIM0_OUT0 #25 LE- TIM0_OUT0 #25 LE- TIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS #0 BOOT_RX		
3	PF2	BUSAX BUSBY	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LE- TIM0_OUT0 #26 LE- TIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO #0 DBG_SWO #0 GPIO_EM4WU0		

Table 6.1. QFN48 with DC-DC Device Pinout

QFN	QFN48 Pin# and Name Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Timers	Communication	Other		
20	PD11	BUSCY BUSDX	TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 LE- TIM0_OUT0 #19 LE- TIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18	US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS #15 US0_RTS #14 US1_TX #19 US1_RX #18 US1_CLK #17 US1_CS #16 US1_CTS #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18	PRS_CH3 #10 PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 ACMP0_0 #19 ACMP1_0 #19		
21	PD12	BUSCX BUSDY	TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDT11 #16 TIM0_CDT12 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 LE- TIM0_OUT0 #20 LE- TIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19	US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 US1_CLK #18 US1_CS #17 US1_CTS #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19	PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20		
22	PD13	BUSCY BUSDX	TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDT12 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LE- TIM0_OUT0 #21 LE- TIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20	US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20	PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_0 #21 ACMP1_0 #21		
23	PD14	BUSCX BUSDY	TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDT12 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LE- TIM0_OUT0 #22 LE- TIM0_OUT0 #22 LE- TIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21	US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21	CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 GPIO_EM4WU4		

EFM32PG1 Data Sheet Pin Definitions

QFN	32 Pin# and Name		Pin Alternate Funct	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
25	VREGVSS	Voltage regulator VSS			
26	VREGSW	DCDC regulator switching	node		
27	VREGVDD	Voltage regulator VDD inp	out		
28	DVDD	Digital power supply.			
29	DECOUPLE	Decouple output for on-ch	ip voltage regulator. An ext	ternal decoupling capacitor	is required at this pin.
30	IOVDD	Digital IO power supply.			
31	PC10	BUSAX BUSBY	TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LE- TIM0_OUT0 #15 LE- TIM0_OUT0 #15 LE- TIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14	US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14	CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12
32	PC11	BUSAY BUSBX	TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LE- TIM0_OUT0 #16 LE- TIM0_OUT0 #16 LE- TIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15	US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15	CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3

6.3.1 EFM32PG1 QFN32 with DC-DC GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PA1	PA0
Port B	PB15	PB14	PB13 (5V)	PB12 (5V)	PB11 (5V)	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	PC11 (5V)	PC10 (5V)	-	-	-	-	-	-	-	-	-	-
Port D	PD15 (5V)	PD14 (5V)	PD13 (5V)	PD12 (5V)	PD11 (5V)	PD10 (5V)	PD9 (5V)	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	PF3 (5V)	PF2 (5V)	PF1 (5V)	PF0 (5V)

Table 6.6. QFN32 with DC-DC GPIO Pinout

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	6НЭ	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		

Table 6.9. ACMP1 Bus and Pin Mapping

7.2 QFN48 PCB Land Pattern

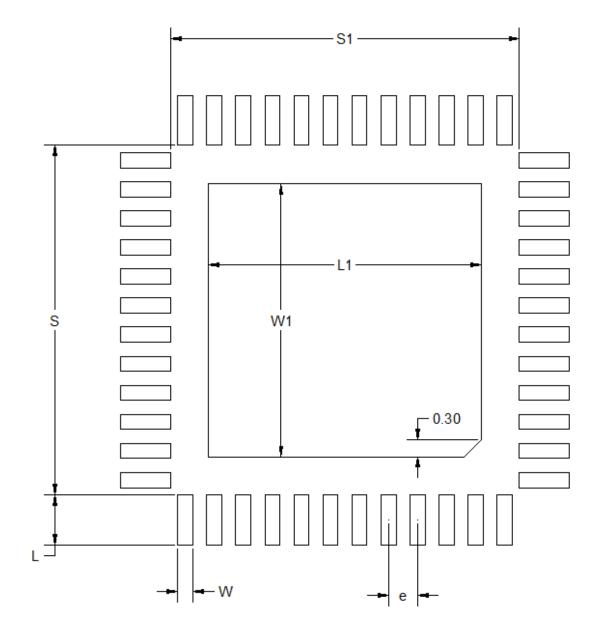


Figure 7.2. QFN48 PCB Land Pattern Drawing

Dimension	Min	Тур	Мах							
A	0.80	0.85	0.90							
A1	0.00	0.05								
A3	0.20 REF									
b	0.18	0.25	0.30							
D/E	4.90	5.00	5.10							
D2/E2	3.40	3.50	3.60							
E	0.50 BSC									
L	0.30	0.40	0.50							
К	0.20	—	—							
R	0.09	—	0.14							
ааа	0.15									
bbb	0.10									
ссс	0.10									
ddd	0.05									
eee	0.08									
fff	0.10									
Noto										

Table 8.1. QFN32 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 QFN32 PCB Land Pattern

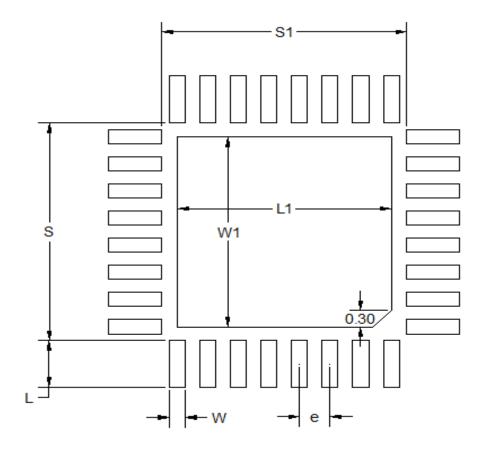


Figure 8.2. QFN32 PCB Land Pattern Drawing

9. Revision History

9.1 Revision 1.1

2016-Oct-26

- · System Overview Sections: Minor wording and typographical error fixes.
- Electrical Characteristics: Minor wording and typographical error fixes.
- "HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC.
- Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections.
- Updated APORT client map sections.

9.2 Revision 1.0

2016-Jul-22

- Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range.
- Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include:
 - Absolute Maximum Ratings
 - · General Operating Conditions
 - DC-DC Converter
 - LFRCO
 - HFRCO and AUXHFRCO
 - ADC
 - IDAC
- Updated Typical Performance Graphs.
- · Added note for 5V tolerance to pinout GPIO Overview sections.
- · Updated OPN decoder with latest revision.
- · Updated Package Marking text with latest descriptions.

9.3 Revision 0.95

2016-04-11

- · All OPNs changed to rev C0.
- · Electrical specification tables updated with latest characterization data and production test limits.

9.4 Revision 0.31

· Engineering samples note added to ordering information table.

9.5 Revision 0.3

- · Re-formatted ordering information table and OPN decoder.
- · Removed extraneous sections from dc-dc from system overview.
- · Updated table formatting for electrical specifications.
- · Updated electrical specifications with latest available data.
- Added I2C and USART SPI timing tables.
- Moved dc-dc graph to typical performance curves.
- · Updated APORT tables and APORT references to correct nomenclature.
- Updated top marking description.

9.6 Revision 0.2

Updated ordering table.

Changed "1.62 V to 3.8 V Single Power Supply" to "1.62 V to 3.8 V Power Supply" in the Feature List.