

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 20x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32pg1b200f256gm32-b0r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.3 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.6.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

3.7 Security Features

3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application.

3.7.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFM32PG1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2^m), and SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.

Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.

The CRYPTO module allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.

3.8 Analog

3.8.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.8.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

0×400f0400		1		0xfffffffe
0x400f0000	CRYPTO	` .		
0x40010000				0xe0100000
0x400e6400	PRS		CN44 Device benefic	0xe00fffff
0x400e6000			CM4 Peripherals	010000000000000000000000000000000000000
0x400e5400	RMU			Avdfffffff
0x400e5000				UXUIIIIII
0x400e4400	CMU			0×47000000
0x400e4000				0x46ffffff
0x400e3400	EMU		Peripherals (bit set)	
0x400e3000	LDMA			0x46000000
0x400e2000				0x45ffffff
0x400e1400	FPUEH			
0x400e1000				0x45000000
0x400e0800	MSC		Device even (hit elever)	0x44††††††
0x400e0000			Feripiterals (bit clear)	0×44000000
0x40052400	WDOG0			0x43ffffff
0x40052000			Peripherals (bit-band)	0,,+5111111
0x4004e400	PCNT0			0×42000000
0x4004e000				0x41ffffff
0x4004a400	LEUARTO			
0x4004a000				0×40100000
0x40046400	LETIMERO			0x400fffff
0x40046000		* / / / /	Peripherals	0
0x40042400	RTCC			0x40000000
0x40042000				0X3TTTTTTT
0x4001e400	CRYOTIMER	X / / //		0x22400000
0x4001e000				0x223fffff
0x4001c400	GPCRC		SRAM (bit-band)	
0x4001c000				0×22000000
0x40018800	TIMER1			0x21ffffff
0x40018400	TIMERO			0
0x40018000				0x20008000
0x40010800	USART1		RAMH	0X2000/TTT
0x40010400	USART0		(data space)	0x20007c00
0x40010000				0x20007bff
0x4000c400	12C0		RAMO (data space)	
0x4000c000			(data space)	0×20000000
0x4000b000	GPIO			0x1fffffff
0x4000a000				
0x40006400	IDAC0			
UX40006000			Code.	
0x40002400	ADC0	Y	Code	
0x40002000		/		
0x40000800	ACMP1	1		
0x40000400	ACMP0	V		0×00000000
UX400000000		<i>a</i>		

Figure 3.3. EFM32PG1 Memory Map — Peripherals

3.12 Configuration Summary

The features of the EFM32PG1 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.1. Configuration Summary

Module	Configuration	Pin Connections
USART0	IrDA SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	IrDA I ² S SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1		TIM1_CC[3:0]

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB}=25 °C and V_{DD}= 3.3 V, by production test and/or technology characterization.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to Table 4.2 General Operating Conditions on page 11 for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Storage temperature range	T _{STG}		-50	_	150	°C
External main supply voltage	V _{DDMAX}		0	_	3.8	V
External main supply voltage ramp rate	VDDRAMPMAX		_	_	1	V / µs
Voltage on any 5V tolerant GPIO pin ¹	V _{DIGPIN}		-0.3	_	Min of 5.25 and IOVDD +2	V
Voltage on non-5V tolerant GPIO pins			-0.3		IOVDD+0.3	V
Voltage on HFXO pins	V _{HFXOPIN}		-0.3		1.4	V
Total current into VDD power lines (source)	I _{VDDMAX}		_		200	mA
Total current into VSS ground lines (sink)	I _{VSSMAX}		_		200	mA
Current per I/O pin (sink)	I _{IOMAX}		_	_	50	mA
Current per I/O pin (source)			_		50	mA
Current for all I/O pins (sink)	I _{IOALLMAX}		_		200	mA
Current for all I/O pins (source)			_	_	200	mA
Voltage difference between AVDD and VREGVDD	ΔV _{DD}		_	_	0.3	V
Junction Temperature for -G grade devices	TJ		-40	_	105	°C
Junction Temperature for -I grade devices			-40	_	125	°C
	•		•			

Table 4.1. Absolute Maximum Ratings

Note:

1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4S Shutoff mode	I _{EM4S}	no RAM retention, no RTCC	—	0.04	_	μA
Note:						

1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD

2. CMU_HFXOCTRL_LOWPOWER=1

3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD

4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD

4.1.5.3 Current Consumption 1.85 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.85 V. T_{OP} = 25 °C. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T_{OP} = 25 °C. See Figure 5.1 EFM32PG1 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 47.

Table 4.7. Current Consumption 1.85V without DC/DC

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit			
Current consumption in EM0 Active mode with all periph-	IACTIVE	38.4 MHz crystal, CPU running while loop from flash ¹	—	127	_	µA/MHz			
		38 MHz HFRCO, CPU running Prime from flash	—	88	_	µA/MHz			
		38 MHz HFRCO, CPU running while loop from flash	—	100	_	µA/MHz			
		38 MHz HFRCO, CPU running CoreMark from flash	—	112	_	µA/MHz			
		26 MHz HFRCO, CPU running while loop from flash	—	102	_	µA/MHz			
		1 MHz HFRCO, CPU running while loop from flash	—	220	_	µA/MHz			
Current consumption in EM1	I _{EM1}	38.4 MHz crystal ¹	_	61	_	µA/MHz			
als disabled		38 MHz HFRCO	_	35	_	µA/MHz			
		26 MHz HFRCO	_	37	_	µA/MHz			
		1 MHz HFRCO	_	154	_	µA/MHz			
Current consumption in EM2 Deep Sleep mode	I _{EM2}	Full RAM retention and RTCC running from LFXO	—	3.2	_	μA			
		4 kB RAM retention and RTCC running from LFRCO	—	2.8	_	μA			
Current consumption in EM3 Stop mode	I _{EM3}	Full RAM retention and CRYO- TIMER running from ULFRCO	—	2.7	_	μA			
Current consumption in EM4H Hibernate mode	I _{EM4}	128 byte RAM retention, RTCC running from LFXO	—	1	_	μA			
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.62	_	μA			
		128 byte RAM retention, no RTCC	_	0.62	_	μA			
Current consumption in EM4S Shutoff mode	I _{EM4S}	No RAM retention, no RTCC	—	0.02	_	μA			
Note: 1.CMU HFXOCTRL LOW	Note: 1. CMU_HEXOCTRL_LOWPOWER=1								

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current from all supplies, us-	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK,	—	102		μA
Duty-cycled operation. WAR- MUPMODE ² = NORMAL		BIASPROG = 0, GPBIASACC = 0 3				
		5 ksps / 16 MHz ADCCLK	_	17	—	μA
		BIASPROG = 0, GPBIASACC = 0				
Current from all supplies, us-	IADC_STAND-	125 ksps / 16 MHz ADCCLK,	_	162	_	μA
Duty-cycled operation. AWARMUPMODE ² = KEEP-	BY_HP	BIASPROG = 0, GPBIASACC = 0 3				
INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK,	—	123	_	μA
		$\begin{array}{l} BIASPROG = 0, \ GPBIASACC = 0 \\ 3 \end{array}$				
Current from HFPERCLK	I _{ADC_CLK}	HFPERCLK = 16 MHz		140		μA
ADC Clock Frequency	f _{ADCCLK}		—	—	16	MHz
Throughput rate	f _{ADCRATE}		_	_	1	Msps
Conversion time ⁴	t _{ADCCONV}	6 bit	_	7		cycles
		8 bit	—	9		cycles
		12 bit	—	13		cycles
Startup time of reference	tadcstart	WARMUPMODE ² = NORMAL	—	—	5	μs
		WARMUPMODE ² = KEEPIN- STANDBY	_	—	2	μs
		WARMUPMODE ² = KEEPINSLO- WACC	_	_	1	μs
SNDR at 1Msps and f _{in} = 10kHz	SNDR _{ADC}	Internal reference, 2.5 V full-scale, differential (-1.25, 1.25)	58	67	_	dB
		vrefp_in = 1.25 V direct mode with 2.5 V full-scale, differential	—	68	_	dB
Spurious-Free Dynamic Range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	—	75	—	dB
Input referred ADC noise, rms	V _{REF_NOISE}	Including quantization noise and distortion	—	380	—	μV
Offset Error	VADCOFFSETERR		-3	0.25	3	LSB
Gain error in ADC	V _{ADC_GAIN}	Using internal reference	_	-0.2	5	%
		Using external reference	_	-1	—	%
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No Missing Co- des	-1	_	2	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	-6	_	6	LSB
Temperature Sensor Slope	V _{TS_SLOPE}			-1.84		mV/°C

SPI Slave Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCKL period ^{1 2}	t _{SCLK_sl}		2 * ^t HFPERCLK	—	—	ns
SCLK high period ^{1 2}	t _{SCLK_hi}		3 * ^t hfperclk	_	_	ns
SCLK low period ^{1 2}	t _{SCLK_lo}		3 * ^t hfperclk	—	—	ns
CS active to MISO ^{1 2}	t _{cs_аст_мі}		4	—	50	ns
CS disable to MISO ^{1 2}	tcs_dis_мi		4	—	50	ns
MOSI setup time ^{1 2}	tsu_мо		4	—	—	ns
MOSI hold time ^{1 2}	t _{H_MO}		3 + 2 * ^t HFPERCLK	_	—	ns
SCLK to MISO ^{1 2}	t _{SCLK_MI}		16 + t _{HFPERCLK}	—	66 + 2 * t _{HFPERCLK}	ns

Table 4.25. SPI Slave Timing

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD})

Figure 4.2. SPI Slave Timing Diagram

4.2 Typical Performance Curves

Typical performance curves indicate typical characterized performance under the stated conditions.

4.2.1 Supply Current

Figure 4.3. EM0 Active Mode Typical Supply Current

Figure 4.4. EM1 Sleep Mode Typical Supply Current

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

6. Pin Definitions

6.1 EFM32PG1 QFN48 with DC-DC Definition

Figure 6.1. EFM32PG1 QFN48 with DC-DC Pinout

QFN	48 Pin# and Name	Pin Alternate Functionality / Description			
Pin #	Pin Name	Analog	Timers	Communication	Other
0	RFVSS	Radio Ground			I
1	PF0	BUSAX BUSBY	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK #0 BOOT_TX
2	PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LE- TIM0_OUT0 #25 LE- TIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS #0 BOOT_RX
3	PF2	BUSAX BUSBY	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LE- TIM0_OUT0 #26 LE- TIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO #0 DBG_SWO #0 GPIO_EM4WU0

Table 6.1. QFN48 with DC-DC Device Pinout

QFN48 Pin# and Name			Pin Alternate Functionality / Description			
Pin #	Pin Name	Analog	Timers	Communication	Other	
8	PF7	BUSAY BUSBX	TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 LE- TIM0_OUT0 #31 LE- TIM0_OUT0 #31 LE- TIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30	US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 US1_CLK #29 US1_CS #28 US1_CTS #27 US1_RTS #26 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30	CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1	
9	AVDD_1	Analog power supply 1.				
10	HFXTAL_N	High Frequency Crystal in	put pin.			
11	HFXTAL_P	High Frequency Crystal or	utput pin.			
12	RESETn	Reset input, active low.To during reset, and let the in	apply an external reset so ternal pull-up ensure that r	urce to this pin, it is required eset is released.	d to only drive this pin low	
13	NC	No Connect.				
14	NC	No Connect.				
15	NC	No Connect.				
16	NC	No Connect.				
17	NC	No Connect.				
18	PD9	BUSCY BUSDX	TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 LE- TIM0_OUT0 #17 LE- TIM0_OUT0 #17 LE- TIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16	US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS #13 US0_RTS #12 US1_TX #17 US1_RX #16 US1_CLK #15 US1_CS #14 US1_CTS #13 US1_RTS #12 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16	CMU_CLK0 #4 PRS_CH3 #8 PRS_CH4 #0 PRS_CH5 #6 PRS_CH6 #11 ACMP0_O #17 ACMP1_O #17	
19	PD10	BUSCX BUSDY	TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 LE- TIM0_OUT0 #18 LE- TIM0_OUT0 #18 LE- TIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17	US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS #14 US0_RTS #13 US1_TX #18 US1_RX #17 US1_CLK #16 US1_CS #15 US1_CTS #14 US1_RTS #13 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17	CMU_CLK1 #4 PRS_CH3 #9 PRS_CH4 #1 PRS_CH5 #0 PRS_CH6 #12 ACMP0_O #18 ACMP1_O #18	

EFM32PG1 Data Sheet Pin Definitions

QFN	QFN48 Pin# and Name Pin Alternate Functionality / Descri			onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
37	VREGVSS	Voltage regulator VSS			
38	VREGSW	DCDC regulator switching	node		
39	VREGVDD	Voltage regulator VDD inp	out		
40	DVDD	Digital power supply.			
41	DECOUPLE	Decouple output for on-ch	ip voltage regulator. An ext	ernal decoupling capacitor	is required at this pin.
42	IOVDD	Digital IO power supply.			
43	PC6	BUSAX BUSBY	TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 LE- TIM0_OUT0 #11 LE- TIM0_OUT0 #11 LE- TIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10	US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS #7 US0_RTS #6 US1_TX #11 US1_RX #10 US1_CLK #9 US1_CS #8 US1_CTS #7 US1_RTS #6 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10	CMU_CLK0 #2 PRS_CH0 #8 PRS_CH9 #11 PRS_CH10 #0 PRS_CH11 #5 ACMP0_O #11 ACMP1_O #11
44	PC7	BUSAY BUSBX	TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LE- TIM0_OUT0 #12 LE- TIM0_OUT0 #12 LE- TIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11	US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 US0_RTS #7 US1_TX #12 US1_RX #11 US1_CLK #10 US1_CS #9 US1_CTS #8 US1_RTS #7 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11	CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12
45	PC8	BUSAX BUSBY	TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDT12 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LE- TIM0_OUT0 #13 LE- TIM0_OUT0 #13 LE- TIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12	US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12	PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13

QFN	48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
46	PC9	BUSAY BUSBX	TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LE- TIM0_OUT0 #14 LE- TIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13	US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13	PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14
47	PC10	BUSAX BUSBY	TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LE- TIM0_OUT0 #15 LE- TIM0_OUT0 #15 LE- TIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14	US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14	CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12
48	PC11	BUSAY BUSBX	TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDT11 #12 TIM0_CDT12 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LE- TIM0_OUT0 #16 LE- TIM0_OUT0 #16 LE- TIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15	US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15	CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3

QFN32 Pin# and Name		Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	Timers	Communication	Other				
4	PF3	BUSAY BUSBX	TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LE- TIM0_OUT0 #27 LE- TIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26	US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26	CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI #0				
5	PF4	BUSAX BUSBY	TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDT10 #25 TIM0_CDT11 #24 TIM0_CDT12 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LE- TIM0_OUT0 #28 LE- TIM0_OUT0 #28 LE- TIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27	US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27	PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28				
6	AVDD_1	Analog power supply 1.							
7	HFXTAL_N	High Frequency Crystal input pin.							
8	HFXTAL_P	High Frequency Crystal output pin.							
9	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.							
10	PD9	BUSCY BUSDX	TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDT10 #14 TIM0_CDT11 #13 TIM0_CDT12 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 LE- TIM0_OUT0 #17 LE- TIM0_OUT0 #17 LE- TIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16	US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS #13 US0_RTS #12 US1_TX #17 US1_RX #16 US1_CLK #15 US1_CS #14 US1_CTS #13 US1_RTS #12 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16	CMU_CLK0 #4 PRS_CH3 #8 PRS_CH4 #0 PRS_CH5 #6 PRS_CH6 #11 ACMP0_O #17 ACMP1_O #17				

6.4 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate	LOCATION								
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
ACMP0_O	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Analog comparator ACMP0, digital out- put.
ACMP1_O	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Analog comparator ACMP1, digital out- put.
ADC0_EXTN	0: PA0								Analog to digital converter ADC0 ex- ternal reference in- put negative pin
ADC0_EXTP	0: PA1								Analog to digital converter ADC0 ex- ternal reference in- put positive pin
BOOT_RX	0: PF1								Bootloader RX
BOOT_TX	0: PF0								Bootloader TX
CMU_CLK0	0: PA1 1: PB15 2: PC6 3: PC11	4: PD9 5: PD14 6: PF2 7: PF7							Clock Management Unit, clock output number 0.
CMU_CLK1	0: PA0 1: PB14 2: PC7 3: PC10	4: PD10 5: PD15 6: PF3 7: PF6							Clock Management Unit, clock output number 1.
DBG_SWCLKTCK	0: PF0								Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this func- tion is enabled to the pin out of reset, and has a built-in pull down.

Table 6.7. Alternate functionality overview

Alternate	LOCATION								
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
GPIO_EM4WU12	0: PC10								Pin can be used to wake the system up from EM4
I2C0_SCL	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	I2C0 Serial Data in- put / output.
LETIM0_OUT0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	LEUART0 Receive input.
LEU0_TX	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	LEUART0 Transmit output. Also used as receive input in half duplex commu- nication.
LFXTAL_N	0: PB14								Low Frequency Crystal (typically 32.768 kHz) nega- tive pin. Also used as an optional ex- ternal clock input pin.
LFXTAL_P	0: PB15								Low Frequency Crystal (typically 32.768 kHz) posi- tive pin.
PCNT0_S0IN	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Pulse Counter PCNT0 input num- ber 0.
PCNT0_S1IN	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Pulse Counter PCNT0 input num- ber 1.
PRS_CH0	0: PF0 1: PF1 2: PF2 3: PF3	4: PF4 5: PF5 6: PF6 7: PF7	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11					Peripheral Reflex System PRS, chan- nel 0.

7. QFN48 Package Specifications

7.1 QFN48 Package Dimensions

Figure 7.1. QFN48 Package Drawing

Dimension	Min	Тур	Мах			
A	0.80	0.85	0.90			
A1	0.00	0.02	0.05			
A3	0.20 REF					
b	0.18	0.25	0.30			
D	6.90	7.00	7.10			
E	6.90	7.00	7.10			
D2	4.60	4.70	4.80			
E2	4.60	4.70	4.80			
е	0.50 BSC					
L	0.30	0.40	0.50			
К	0.20	_	_			
R	0.09	—	0.14			
ааа						
bbb	0.10					
ссс	0.10					
ddd	0.05					
eee	0.08					
fff	0.10					
Noto						

Table 7.1. QFN48 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 7.2. QFN48 PCB Land Pattern Dimensions

Dimension	Тур
S1	6.01
S	6.01
L1	4.70
W1	4.70
e	0.50
W	0.26
L	0.86

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.7 Revision 0.1

Initial release.