

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	27
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VFQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atmega3208-mfr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Multiplexing and Considerations

4. I/O Multiplexing and Considerations

4.1 Multiplexed Signals

QFN32/ TQFP32	Pin name ^(1,2)	Special	ADC0	AC0	USARTn	SPI0	тшо	TCA0	TCBn	Other	CCL-LUTn
30	PA0	EXTCLK			0,TxD			0-WO0			0-IN0
31	PA1				0,RxD			0-WO1			0-IN1
32	PA2	TWI			0,XCK		SDA(MS)	0-WO2	0-WO	EVOUTA	0-IN2
1	PA3	TWI			0,XDIR		SCL(MS)	0-WO3	1-WO		0-OUT
2	PA4				0,TxD ⁽³⁾	MOSI		0-WO4			
3	PA5				0,RxD ⁽³⁾	MISO		0-WO5			
4	PA6				0,XCK ⁽³⁾	SCK					0-OUT ⁽³⁾
5	PA7	CLKOUT		OUT	0,XDIR ⁽³⁾	SS				EVOUTA ⁽³⁾	
6	PC0				1,TxD	MOSI ⁽³⁾		0-WO0 ⁽³⁾	2-WO		1-IN0
7	PC1				1,RxD	MISO ⁽³⁾		0-WO1 ⁽³⁾	3-WO ⁽³⁾		1-IN1
8	PC2	TWI			1,XCK	SCK ⁽³⁾	SDA(MS) ⁽³⁾	0-WO2 ⁽³⁾		EVOUTC	1-IN2
9	PC3	TWI			1,XDIR	SS ⁽³⁾	SCL(MS) ⁽³⁾	0-WO3 ⁽³⁾			1-OUT
10	PD0		AIN0					0-WO0 ⁽³⁾			2-IN0
11	PD1		AIN1	P3				0-WO1 ⁽³⁾			2-IN1
12	PD2		AIN2	P0				0-WO2 ⁽³⁾		EVOUTD	2-IN2
13	PD3		AIN3	N0				0-WO3 ⁽³⁾			2-OUT
14	PD4		AIN4	P1				0-WO4 ⁽³⁾			
15	PD5		AIN5	N1				0-WO5 ⁽³⁾			
16	PD6		AIN6	P2							2-OUT ⁽³⁾
17	PD7	VREFA	AIN7	N2						EVOUTD ⁽³⁾	
18	AVDD										
19	GND										
20	PF0	TOSC1			2,TxD			0-WO0 ⁽³⁾			3-IN0
21	PF1	TOSC2			2,RxD			0-WO1 ⁽³⁾			3-IN1
22	PF2	TWI	AIN12		2,XCK		SDA(S) ⁽³⁾	0-WO2 ⁽³⁾		EVOUTF	3-IN2
23	PF3	TWI	AIN13		2,XDIR		SCL(S) ⁽³⁾	0-WO3 ⁽³⁾			3-OUT
24	PF4		AIN14		2,TxD ⁽³⁾			0-WO4 ⁽³⁾	0-WO(3)		
25	PF5		AIN15		2,RxD ⁽³⁾			0-WO5 ⁽³⁾	1-WO ⁽³⁾		
26	PF6	RESET			2,XCK ⁽³⁾						3-OUT ⁽³⁾
27	UPDI										
28	VDD										
29	GND										

Note:

- 1. Pin names are of type P*xn*, with *x* being the PORT instance (A,B,C, ...) and *n* the pin number. Notation for signals is PORT*x*_PIN*n*. All pins can be used as event input.
- 2. All pins can be used for external interrupt, where pins Px2 and Px6 of each port have full asynchronous detection.
- 3. Alternate pin positions. For selecting the alternate positions, refer to the PORTMUX documentation.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Stresses beyond those listed in this section may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5-1. Absolute Maximum Ratings

Symbol	Description	Conditions	Min.	Max.	Unit
V _{DD}	Power Supply Voltage		-0.5	6	V
I _{VDD}	Current into a V _{DD} pin	T _A =[-40, 85]°C	-	200	mA
		T _A =[85, 125]°C	-	100	mA
I _{GND}	Current out of a GND pin	T _A =[-40, 85]°C	-	200	mA
		T _A =[85, 125]°C	-	100	mA
V _{PIN}	Pin voltage with respect to GND		-0.5	V _{DD} +0.5	V
I _{PIN}	I/O pin sink/source current		-40	40	mA
I _{c1} ⁽¹⁾	I/O pin injection current except for the RESET pin	V _{pin} <gnd-0.6v 5.5v<v<sub="" or="">pin≤6.1V 4.9V<v<sub>DD≤5.5V</v<sub></gnd-0.6v>	-1	1	mA
I _{c2} ⁽¹⁾	I/O pin injection current except for the RESET pin	V _{pin} <gnd-0.6v or="" v<sub="">pin≤5.5V V_{DD}≤4.9V</gnd-0.6v>	-15	15	mA
T _{storage}	Storage temperature		-65	150	°C

Note:

- 1. If V_{PIN} is lower than GND-0.6V, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (GND-0.6V V_{pin})/I_{Cn}.
 - If V_{PIN} is greater than V_{DD} +0.6V, then a current limiting resistor is required. The positive DC injection current limiting resistor is calculated as R = $(V_{pin}-(V_{DD}+0.6))/I_{Cn}$.

5.2 General Operating Ratings

The device must operate within the ratings listed in this section in order for all other electrical characteristics and typical characteristics of the device to be valid.

Table 5-2. General Operating Conditions

Symbol	Description	Condition	Min.	Max.	Unit
V _{DD}	Operating Supply Voltage		1.8 ⁽¹⁾	5.5	V
T _A	Operating temperature range	Standard temperature range	-40	125	°C

Note:

1. Operation is guaranteed down to 1.8V or VBOD with BODLEVEL=1.8V, whichever is lower.

Electrical Characteristics

Mode	Description	Condition	Тур.	Max.	Unit	
	Description		V _{DD} =3V	0.8	-	mA
		f _{CLK_CPU} =5 MHz (OSC20M div4)	V _{DD} =5V	0.7	-	mA
			V _{DD} =3V	0.4	-	mA
			V _{DD} =2V	0.25	-	mA
		f _{CLK_CPU} =32 KHz (OSCULP32K)	V _{DD} =5V	5.6	-	μA
			V _{DD} =3V	2.8	-	μA
			V _{DD} =2V	1.8	-	μA

Table 5-6. Power Consumption in Power-Down, Standby and Reset Mode

Mode	Description	Condition		Typ. 25°C	Max. 85°C	Max. 125°C	Unit
Standby	Standby power consumption	RTC running at 1.024 kHz from external XOSC32K (CL=7.5pF)	V _{DD} =3V	0.69	-	-	μA
		RTC running at 1.024 kHz from internal OSCULP32K	V _{DD} =3V	0.65	TBD	TBD	μA
Power Down/ Standby	Power down/Standby power consumption are the same when all peripherals are stopped	All peripherals stopped	V _{DD} =3V	0.10	TBD	TBD	μA
Reset	Reset power consumption	RESET line pulled low	V _{DD} =3V	100	-	-	μA

5.5 Peripherals Power Consumption

The table below can be used to calculate the additional current consumption for the different I/O peripherals in the various operating modes.

Operating conditions:

- V_{DD}=3V
- T=25°C
- OSC20M at 1 MHz used as system clock source, except where otherwise specified.

Table 5-7. Peripherals Power Consumption

Peripheral	Conditions	Typ. ⁽¹⁾	Unit
BOD	Continuous	19	μA
	Sampling @ 1 kHz	1.2	
ТСА	16-bit count @ 1 MHz	12.6	μA

Electrical Characteristics

Symbol	Description	Condition		Min.	Тур.	Max.	Unit
	Factory calibration accuracy		T _A =25°C, 3.0V	TBD	±0.75	TBD	%
E _{TOTAL}	Total error with 16 MHz frequency selection	From target frequency	T _A =[0, 70]°C, V _{DD} =[1.8, 3.6]V	TBD	±2	TBD	%
			Full operation range	TBD	±3	TBD	
	Total error with 20 MHz frequency selection	From target frequency	T _A =[0, 70]°C, V _{DD} =[1.8, 3.6]V	TBD	±2	TBD	
			Full operation range	TBD	±3	TBD	
E _{DRIFT}	Accuracy with 16 MHz Frequency Selection relative to the factory-stored frequency value	Factory calibrated $V_{DD}=3V^{(1)}$	T _A =[0, 70]°C, V _{DD} =[1.8, 5.5]V	TBD	±1.5	TBD %	%
	Accuracy with 20 MHz Frequency Selection relative to the factory-stored frequency value	Factory calibrated $V_{DD}=3V^{(1)}$	T _A =[0, 70]°C, V _{DD} =[1.8, 5.5]V	TBD	±1.5	TBD	
Δf_{OSC20M}	Calibration step size			-	0.75	-	%
D _{OSC20M}	Duty cycle			-	50	-	%
t _{startup}	Start-up time	Within 2% accuracy		-	12	-	μs

Note:

- 1. See also the description of OSC20M on calibration.
- 2. Oscillator Frequencies above speed specification must be divided so that CPU clock always is within specification.

Symbol	Description	Condition	Condition	Min.	Тур.	Max.	Unit
f _{OSCULP32K}	Factory calibration frequency				32.768		kHz
	Factory calibration accuracy		T _A =25°C, 3.0V	-3	±2	3	%
E _{TOTAL}	Total error from target frequency	Factory calibrated	T _A =[0, 70]°C, V _{DD} =[1.8, 3.6]V	-10	±5	+10	%
			Full operation range	-30	±10	+30	
D _{OSCULP32K}	Duty cycle				50		%
t _{startup}	Start-up time			-	250	-	μs

Electrical Characteristics

Symbol ⁽²⁾	Description	Condition	Min.	Тур.	Max.	Unit
INT15V INT25V						
INT055V INT11V INT15V INT25V INT43V	Internal reference voltage	V _{DD} =[1.8V, 5.5V] T=[-40 - 125]°C	-5.0		5.0	

Note:

- 1. These values are based on characterization and not covered by production test limits.
- 2. The symbols INTxxV refer to the respective values of the AC0REFSEL bit field in the VREF.CTRLA register.

5.11 ADC

5.11.1 Internal Reference Characteristics

Operating conditions:

- V_{DD} = 1.8 to 5.5V
- Temperature = -40°C to 125°C
- DUTYCYC = 25%
- CLK_{ADC} = 13 * f_{ADC}
- SAMPCAP is 10 pF for 0.55V reference, while it is set to 5 pF for $V_{REF} \ge 1.1V$
- Applies for all allowed combinations of V_{REF} selections and Sample Rates unless otherwise noted

Table 5-20. Power Supply, Reference, and Input Range

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	$CLK_{ADC} \le 1.5 \text{ MHz}$	1.8	-	5.5	V
		CLK _{ADC} > 1.5 MHz	2.7	-	5.5	
V _{REF}	Reference voltage	REFSEL = Internal reference	0.55	-	V _{DD} -0.5	V
		REFSEL = External reference	1.1		V _{DD}	
		REFSEL = V _{DD}	1.8	-	5.5	
C _{IN}	Input capacitance	SAMPCAP=5 pF	-	5	-	pF
		SAMPCAP=10 pF	-	10	-	
V _{IN}	Input voltage range		0	-	V _{REF}	V
I _{BAND}	Input bandwidth	1.1V≤V _{REF}	-	-	57.5	kHz

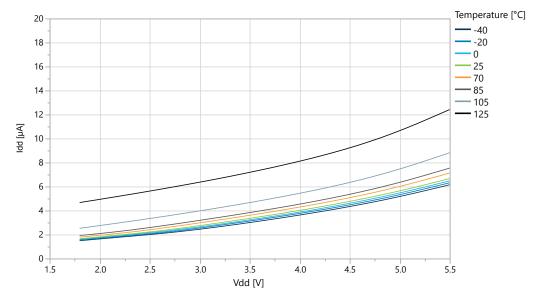
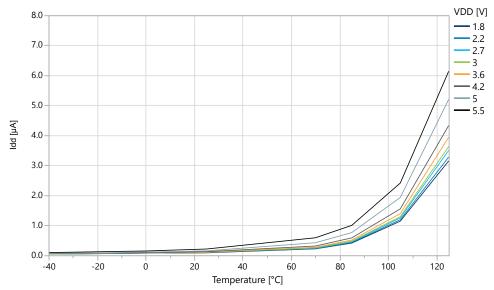
Electrical Characteristics

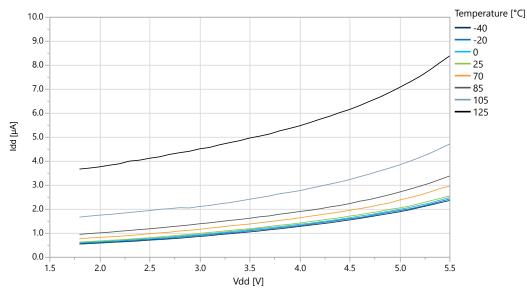
Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
f _{ADC}	Sample rate	1.1V≤V _{REF}	15	-	115	ksps
		1.1V≤V _{REF} (8-bit resolution)	15	-	150	
		V _{REF} =0.55V (10 bits)	7.5	-	20	
CLK _{ADC}	Clock frequency	V _{REF} =0.55V (10 bits)	100	-	260	kHz
		1.1V≤V _{REF} (10 bits)	200	-	1500	
		1.1V≤V _{REF} (8-bit resolution)	200	-	2000	
Ts	Sampling time		2	2	33	CLK _{ADC} cycles
T _{CONV}	Conversion time (latency)	Sampling time = 2 CLK _{ADC}	8.7	-	50	μs
T _{START}	Start-up time	Internal V _{REF}	-	22	-	μs

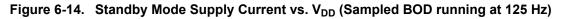
Table 5-21. Clock and Timing Characteristics

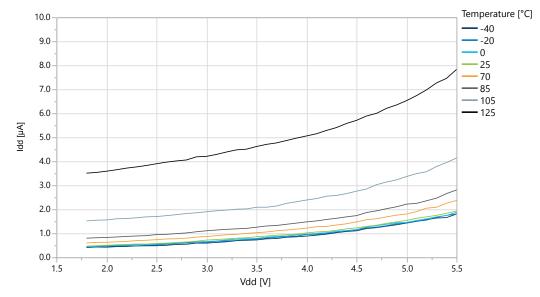
Table 5-22. Accuracy Characteristics Internal Reference⁽²⁾

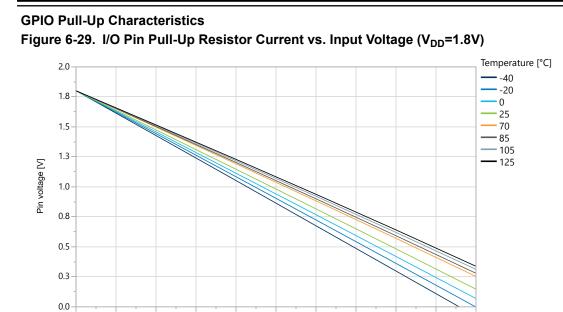
Symbol	Description	Conditions		Min.	Тур.	Max.	Unit
Res	Resolution			-	10	-	bit
INL	Integral Non- linearity	REFSEL = INTERNAL	f _{ADC} =7.7 ksps	-	1.0	-	LSB
		V _{REF} =0.55V					
		REFSEL = INTERNAL or VDD	f _{ADC} =15 ksps	-	1.0	-	
		REFSEL =	f _{ADC} =77 ksps	-	1.0	-	
		INTERNAL or VDD 1.1V≤V _{REF}	f _{ADC} =115 ksps	-	1.2	-	
DNL ⁽¹⁾	Differential Non-linearity	REFSEL = INTERNAL V _{REF} = 0.55V	f _{ADC} =7.7 ksps	-	0.6	-	LSB
		REFSEL = INTERNAL	f _{ADC} =15 ksps	-	0.4	-	
		V _{REF} = 1.1V					
		REFSEL = INTERNAL or VDD	f _{ADC} =15 ksps	-	0.4	-	
		1.5V≤V _{REF}					
		REFSEL = INTERNAL or VDD	f _{ADC} =77 ksps	-	0.4	-	
		1.1V≤V _{REF}					


Figure 6-9. Idle Supply Current vs. V_{DD} (f=32 KHz OSCULP32K)



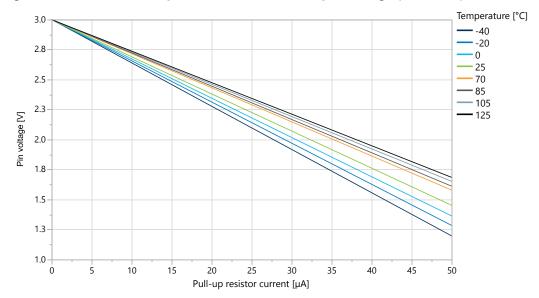



6.1.4 Supply Currents in Standby Mode

25

Pull-up resistor current [µA]

30


35

40

45

50

20

Ó

5

10

15

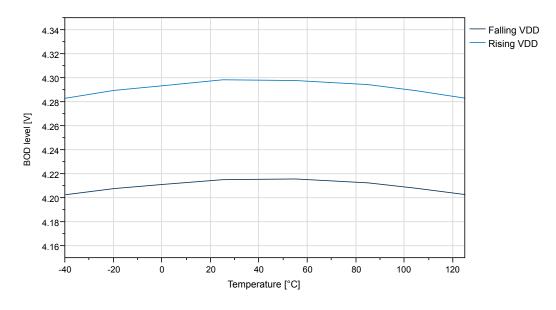
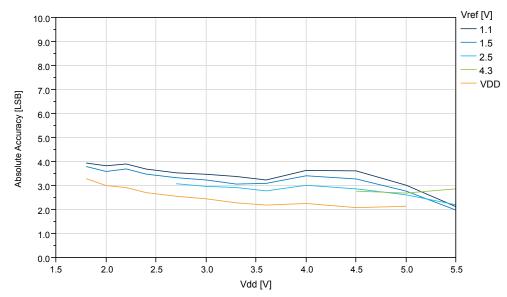



Figure 6-41. BOD Threshold vs. Temperature (Level 4.3V)

6.5 ADC Characteristics

Figure 6-42. Absolute Accuracy vs. V_{DD} (f_{ADC}=115 ksps) at T=25°C, REFSEL = Internal Reference

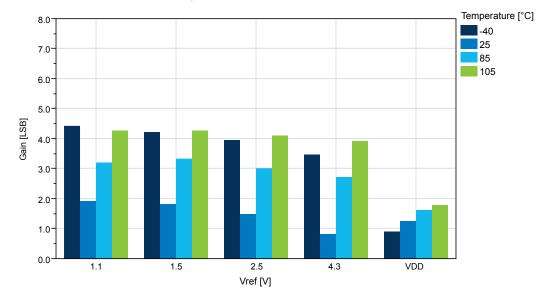
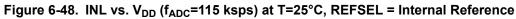
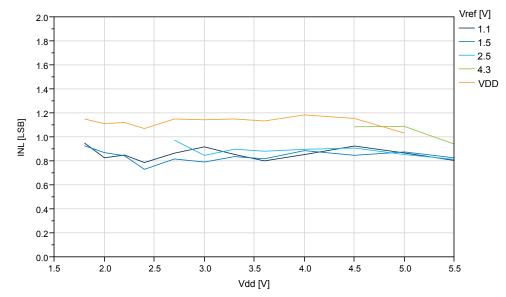




Figure 6-47. Gain Error vs. V_{ref} (V_{DD}=5.0V, f_{ADC}=115 ksps), REFSEL = Internal Reference

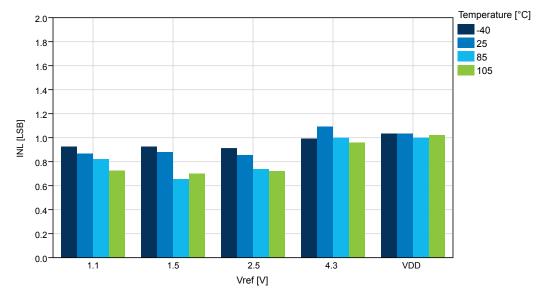
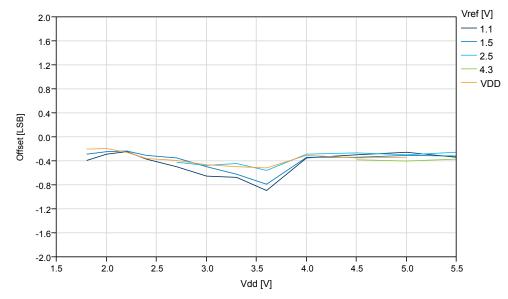



Figure 6-49. INL vs. V_{ref} (V_{DD}=5.0V, f_{ADC}=115 ksps), REFSEL = Internal Reference

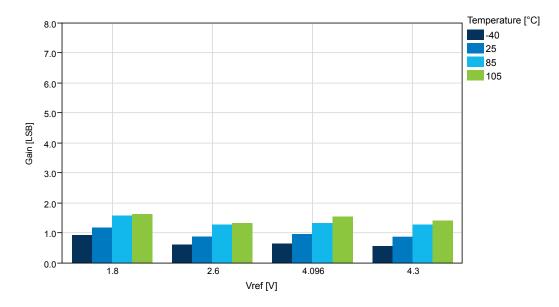
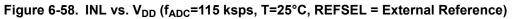
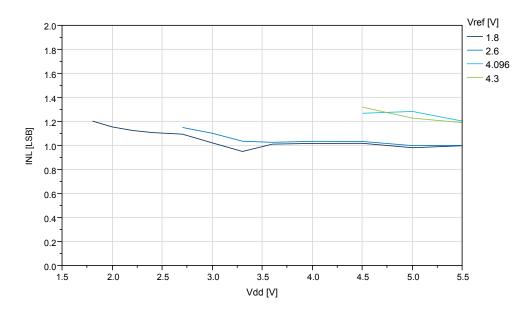




Figure 6-57. Gain vs. V_{REF} (V_{DD}=5.0V, f_{ADC}=115 ksps, REFSEL = External Reference)

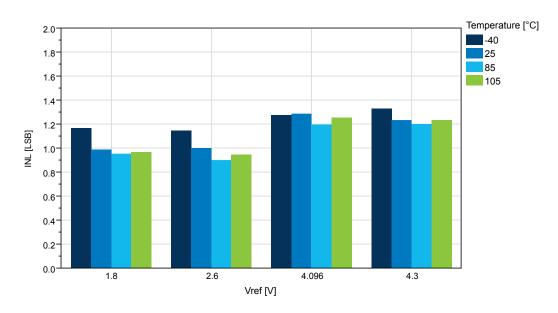
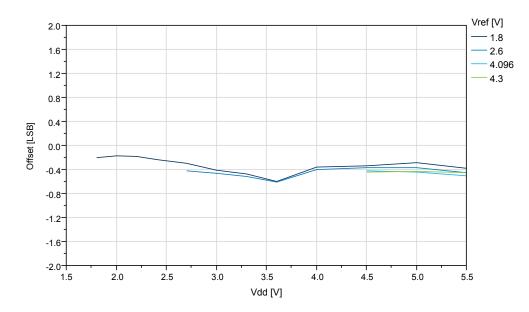
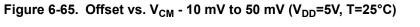
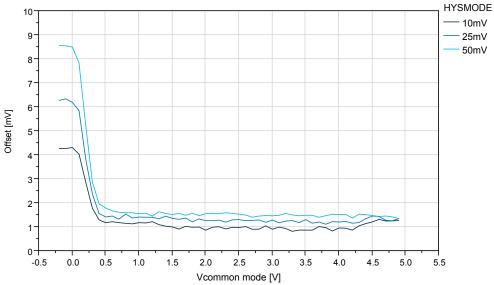
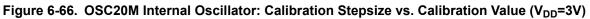
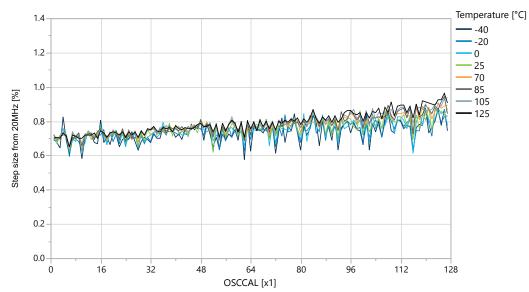





Figure 6-59. INL vs. V_{REF} (V_{DD}=5.0V, f_{ADC}=115 ksps, REFSEL = External Reference)





6.7 OSC20M Characteristics

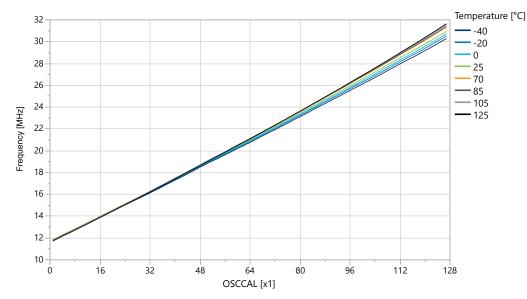
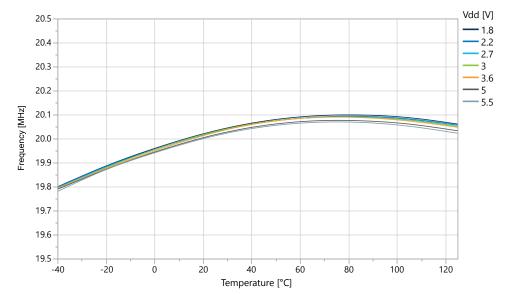



Figure 6-67. OSC20M Internal Oscillator: Frequency vs. Calibration Value (V_{DD}=3V)

Figure 6-68. OSC20M Internal Oscillator: Frequency vs. Temperature

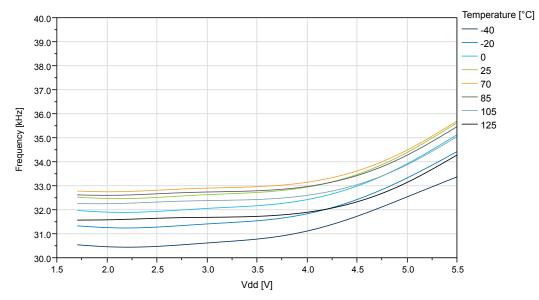
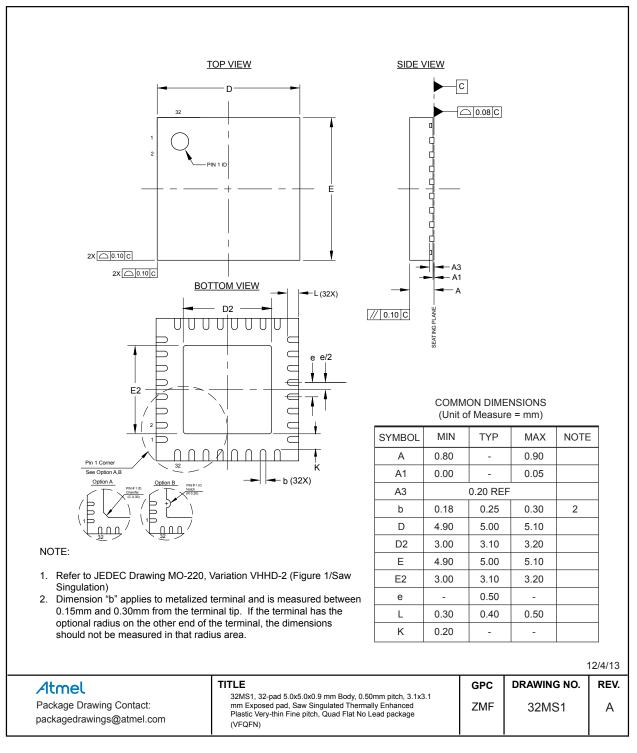



Figure 6-71. OSCULP32K Internal Oscillator Frequency vs. V_{DD}

ATmega3208/4808 – 32-pin Data Sheet Package Drawings

7.2 32-pin VQFN

8. Conventions

8.1 Memory Size and Type

Table 8-1. Memory Size and Bit Rate

Symbol	Description
КВ	kilobyte (2 ¹⁰ = 1024)
MB	megabyte (2 ²⁰ = 1024*1024)
GB	gigabyte (2 ³⁰ = 1024*1024*1024)
b	bit (binary '0' or '1')
В	byte (8 bits)
1 kbit/s	1,000 bit/s rate (not 1,024 bit/s)
1 Mbit/s	1,000,000 bit/s rate
1 Gbit/s	1,000,000,000 bit/s rate
word	16-bit

8.2 Frequency and Time

Table 8-2. Frequency and Time

Symbol	Description
kHz	1 kHz = 10 ³ Hz = 1,000 Hz
KHz	1 KHz = 1,024 Hz, 32 KHz = 32,768 Hz
MHz	1 MHz = 10 ⁶ Hz = 1,000,000 Hz
GHz	1 GHz = 10 ⁹ Hz = 1,000,000,000 Hz
s	second
ms	millisecond
μs	microsecond
ns	nanosecond

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support