

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	30
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z32f06410aks

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.2 and Figure 1.3 show the pin layouts.

Figure 1.2 Pin Layout (LQFP-48)

PER2 Peripheral Enable Register 2

Prior to using a peripheral unit, it requires to be activated by writing **1** to the corresponding bit in the PER1/PER2 register. Until activation, the peripheral stays in Reset state.

To disable the peripheral unit, write $\mathbf{0}$ to the corresponding bit in the PER0/PER1 register, after which the peripheral enters the Reset state.

PER2=0x4000_002C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										ADC1	ADC0				MWPM0							UART1	UART0				12C0				SP10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
										RW	RW				RW							RW	RW				RW				RW

21	ADC1	ADC1 function enable
20	ADC0	ADC0 function enable
16	MPWM0	MPWM0 function enable
9	UART1	UART1 function enable
8	UART0	UART0 function enable
4	I2C0	I ² C0 function enable
0	SPI0	SPI0 function enable

DBCLK1=0x4000_009C

DBCLK1 Debounce Clock Control Register 1

The Debounce Clock Control register 1 controls the debounce timing configuration for Port A and Port B.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						PBDCSEL					PBDDIV											PADCSEL									
0	0	0	0	0		000					0x	01				0	0	0	0	0		000					0x	01			
						RW					R١	w										RW	ĺ				R	w			
								26 PBDCSEL Debounce Clock for Port B source select bit 24 0xx RING OSC 1Mhz 100 MCLK (bus clock)																							
								2	26 PBDCSEL Debounce Clock for Port B source select bit 24 0xx RING OSC 1Mhz 100 MCLK (bus clock) 101 Percented																						
												Debounce Clock for Port B Source select bit 0xx RING OSC 1Mhz 100 MCLK (bus clock) 101 Reserved																			
																10			rna	JU IM:	ain (0.50	: (X	ΤΔΙ)						
															1	11		Res	erve	d		000	, (),		-/						
								2	3	Р	BDD	ΟIV			F	POR	ΤВ	De	bou	ince	Clo	ock	Νc	livid	er						
								1	6																						
								1	0	P	ADC	SEL	-)ebc	ounc	e C	loc	k fo	r Po	ort A	A sc	ource	e se	elect	t bit				
								8							0	XX		RIN	<u>G</u> C	<u>)SC</u>	1M	hz									
																00			_K (bus	clo	ck)									
															1	01		Kes	erve	ed	- i.e. (000		T A1	\ \						
															1	10	1		erna	i ivla sd	ain (050) (X	IAL	-)						
								7		P					- I F				hou	nce	Clo	nck	Nd	livid	er						
								Ó		• •						5.0	. , ,	20													

Figure 5.2 I/O Port Block Diagram (ADC and External Oscillator pins)

Figure 5.3 I/O Port Block Diagram (General I/O pins)

Pn.BSR PORT n Bit Set Register

Pn.BSR is a register for controlling each bit of the PnODR register. Writing a **1** into the specific bit will set a corresponding bit of PnODR to **1**. Writing **0** in this register has no effect.

										PA.B PC.B	SR=0x4 SR=0x4	000_200 000_220	8, PB.B 8, PD.B	SR=0x40 SR=0x40	00_2108 00_2308
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BS	SR							
							00	00							
							w	0							
•															
					BSI	۲	_P	in curr	ent leve	el					
							0	Not	t effect						
							1	Set	corres	ponden	t bit in	PnODF	R regist	er	

Pn.BCR PORT n Bit Clear Register

Pn.BRR is a register for controlling each bit of the PnODR register. Writing a **1** into the specific bit will set a corresponding bit of PnODR to **0**. Writing **0** in this register has no effect.

										PA.BO PC.BO	CR=0x40 CR=0x40	00_2000 00_2200	C, PB.BC C, PD.BC	CR=0x40 CR=0x40	00_210C 00_230C
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Pn	BCR							
							00	000							
							v	0							
				_											
					BCI	R		Pin curr	ent lev	el					
							() No	t effect						
								1 Cle	ear corr	espond	ent bit i	n PnOI	DR regi	ster	

DC*n*.PAR DMA Controller Peripheral Address Register

This register represents the peripheral addresses.

DC0.PAR=0x4000_0408 , DC1.PAR=0x4000_0418 DC2.PAR=0x4000_0428 , DC3.PAR=0x4000_0438

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
--	-----------------------	-----------------

Peripheral BASE OFFSET		PAR	
0x4000		0x0000	
RO		RW	
31 P4 0	IR T k t t c t t	Target Peripheral address of transmit buffer or receive buffer. User must set exact target peripheral buffer address in this field. If DIR is "0" this address is destination address of data transfer. If DIR is "1", this address is source address of data transfer.	

DCn.MAR DMA Controller Memory Address Register

This register represents the memory addresses.

DC0.MAR=0x4000_040C , DC1.MAR=0x4000_041C DC2.MAR=0x4000_042C , DC3.MAR=0x4000_043C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																							M	AR							
							0x2	000															0x0	0000							
							R	0								ĺ							R	w							
														Target memory address of data transfer. Address is automatically incremented according to SIZ																	
								З	31	Μ	AR			Target memory address of data transfer. Address is automatically incremented according to SIZE																	
								C)					Target memory address of data transfer. Address is automatically incremented according to SIZE bits when each transfer is done.														E			
															l r	f Dl nsfe	IR is r.	s "C)" th	nis	addı	ress	is	soui	rce	add	ress	s of	dat	a tr	ra
															 a	f D a tra	IR i ansf	s "1 er.	", t	his	add	lress	s is	des	stina	ition	ad	dres	s o	f da	at

Registers

The base address of the watchdog timer is $0 \times 4000 _ 0200$ and the register map is described in Table 10.1. The initial watchdog time-out period is set to 2,000-milliseconds.

NAME	OFFSET	TYPE	DESCRIPTION	RESET VALUE
WDT.LR	0x0000	W	WDT Load register	0x0000000
WDT.CNT	0x0004	R	WDT Current counter register	0x0000FFFF
WDT.CON	0x0008	RW	WDT Control register	0x0000805C

	Table 10.1	Watchdog	Timer	Register	Мар
--	------------	----------	-------	----------	-----

WDT.LR Watchdog Timer Load Register

The WDTLR register is used to update the WDTCVR register. To update the WDTCVR register, the WEN bit of WDTCON should be set to **1** and written to the WDTLR register with a target value of WDTCVR.

WDT.LR=0x4000_0200

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															WD	TLR															
														0x	000	0_00	00														
															R	w															
								3	1	V	/DT	LR			٧	Vato	hdo	g ti	mer	loa	d v	alue	e reg	giste	ər						
								C)						ł	Keep	oing	WE	EN I	bit a	as ''	1', \	write	e W	DTL	_R r	egis	ster	will	up	d
															á	ate	WD.	ТС٧	/R \	/alu	e wi	ith ۱	writt	en '	valu	е					

WDT.CNT Watchdog Timer Current Counter Register

The WDTCNT register represents the current count value of 32-bit down counter .When the counter value reaches 0, an interrupt or reset occurs.

WDT.LR=0x4000_0204

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														١	VDT	CNT	-														
														0x0	0000	_FF	FF														
	RW																														
								3	31	V	/DT	CNT	Г		V	Vatc	hdo	g ti	mer	cui	rrent	t co	unte	er re	egis	ter					
								C)						3	2-bi	t do	own	COL	unte	r wi	ll ru	ın fi	rom	the	e wr	itten	ı va	lue.		

Figure 11.4. One Shot Mode Operation

The period of one shot count can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value

Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1" because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffer 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated whenever the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal format is the same as PWM mode. Tn.GRB value defines the output pulse period and the Tn.GRA value defines the pulse width of one shot pulse.

PWM Timer Output

Figure 11.5 shows the timing diagram in PWM output mode. The Tn.GRB value decides the PWM pulse period. An additional comparison point is provided by the Tn.GRA register value which defines the pulse width of PWM output.

Figure 11.8. Capture Mode Operation

A 5 PCLK clock cycle is required internally. Therefore, the actual capture point is after 5 PCLK clock cycles from the rising or falling edge of the TnIO input signal.

The internal counter can be cleared in multiple modes. The TnCR1.CLRMD field controls the counter clear mode. The following clear modes are supported: Rising edge, Falling edge, Both edges, and None.

The example in Figure 11.8 is of Rising edge clear mode.

ADC Trigger Function

The timer module can generate ADC start trigger signals. One timer can be one trigger source of the ADC block. Trigger source control is performed by the ADC control register.

Figure 11.9 shows the ADC trigger function.

The conversion rate must be shorter than the timer period, else an overrun situation can occur. ADC acknowledge is not required because the trigger signal is automatically cleared after 3 PCLK clock pulses.

Un.IER UART Interrupt Enable Register

The UART Interrupt Enable Register is an 8-bit register.

7	6	5 DTXIEN		4	3	2	1	0							
-	-	DT	XIEN	DRXIEN	TXIE	RLSIE	THREIE	DRIE							
0	0		0	0	0	0	0	0							
		F	w	RW		RW	RW	RW							
		5	DTXI	EN _	DMA transmit d	lone interrupt e	enable								
				-	0 Receive lin	ne status interr	upt is disabled								
					1 Receive lir	ne status interr	upt is enabled								
		4	DRXI	EN _	DMA receive done interrupt enable										
				-	0 DMA receive done interrupt is disabled										
					1 DMA receive done interrupt is enabled										
		3	IXIE	-	O Transmit register empty interrupt enable										
				-	U Transmit register empty interrupt is disabled										
				_	1 Transmit regis	ster empty inte	rrupt is enable	0							
		2	RLSI		Receiver line st	atus interrupt e	enable								
				-	U Receive lir	ne status interr	upt is disabled								
		1	тирг	-11-	T Receive III	ne status interr	upt is enabled	bla							
		I	INKE		Iransmit noiding register empty interrupt enable										
					d										
				-	1 Transmit holding register empty interrupt is enabl d										
		0	DRIE		Data receive in	terrupt enable									
				-	0 Data recei	ve interrupt is	disabled								
				-	1 Data recei	receive interrupt is enabled									

Un.IIR UART Interrupt ID Register

The UART Interrupt ID Register is an 8-bit register.

U0.IIR=0x4000_8008, U1.IIR=0x4000_8108

7	6		5	4	3	2	1	0
				ТХЕ		IID		IPEN
0	0	<u> </u>	0	0	1	000		0
				R			R	
		4	TXE	l	nterrupt source See interrupt s	e ID ource ID table		
		3	IID					
		0	IPEN		nterrupt pendir	ng bit s pending		

1

No interrupt is pending.

U0.LCR=0x4000_800C, U1.LCR=0x4000_810C

Un.LCR UART Line Control Register

The UART Line Control Register is an 8-bit register.

7	6	5	4	3	2	1	0					
	BREAK	STICKP	PARITY	PEN	STOPBIT	DL	EN					
0	0	0	0	0	0	0	0					
	RW	RW	RW	RW	RW	RW	RW					
	6	BREAK	When this r to notic 0 No 1 Bro	s bit is set, Tx e the alert to rmal transfer n eak transmit m	D pin will be of the receiver. node	driven at low s	tate in orde					
	5	STICKP	Force par 0 Pa 1 Pa	rity and it will rity stuck is dia rity stuck is er	be effective wh sabled nabled and par	nen PEN bit is rity always the	set. bit of PARI					
	4	PARITY	Parity mo 0 Oc 1 Ev	de selection bi d parity mode en parity mode	it and stuck pa	arity select bit						
	3	PEN	Parity bit 0 Th 1 Th	transfer enable e parity bit dis e parity bit ena	e abled abled							
	2	STOPBIT	<u>The numl</u> 0 1 : 1 1.5 In e	The number of stop bit followed by data bits. 0 1 stop bit 1 1.5 / 2 stop bit In case of 5 bit data case, 1.5 stop bit is added. In case e of 67 or 8 bit data 2 stop bit is added								
	1 0	DLEN	The data 00 5 01 6 10 7 11 8	The data length in one transfer word.005 bit data016 bit data107 bit data118 bit data								

Parity bit is generated according to bit 3, 4, 5 of UnLCR register. The following table shows the variation of parity bit generation.

STICKP	PARITY	PEN	Parity
Х	Х	0	No Parity
0	0	1	Odd Parity
0	1	1	Even Parity
1	0	1	Force parity as "1"
1	1	1	Force parity as "0"

U0.DCR=0x4000_8010, U1.DCR=0x4000_8110

Un.DCR UART Data Control Register

The UART Data Control Register is an 8-bit register.

7	6	5	4	3	2	1	0					
			LBON	RXINV	TXINV							
0	0	0	0	0	0	0	0					
				RW	RW							
	_	4 LBON	Local loo	pback test mo	de enable							
			0 No 1 Lo	ormal mode cal loopback n	node (TxD con	nected to RxD	internally)					
	-	3 RXINV	Rx Data Inversion Selection 0 Normal RxData Input 1 Inverted RxData Input									
	-	2 TXINV	Tx Data 0 No 1 Inv	Inversion Select ormal TxData Content of the conten	ction Dutput Output							

SP0.RDR SPI Receive Data Register

SP0.RDR is a 17-bit read/write register. It contains serial receive data.

SP0.CR SPI Control Register

SP0.CR is a 20-bit read/write register which can be set to configure SPI operation mode.

_																								_						_	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											TXBC	RXBC	TXDIE	RXDIE	SSCIE	TXIE	RXIE	SSMOD	SSOUT	LBE	SSMASK	SSMO	SSPOL			MS	MSBF	СРНА	CPOL	DITC7	76110
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	00
											RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW			RW	RW	RW	RW	M	
						20	Г	ТХВ	С		T>	k bu	ffer	clea	ar bi	t.															
											0	N	lo a	ctior	ו י י י																
					-	10			~		1		fear			er +															
						19	Г		C		-0			ciea		L															
											0 No action 1 Clear Rx buffer																				
					-	18	Г	XD	IE		1 Clear Rx buffer DMA Tx Done Interrupt Enable bit.																				
											0	D	MA	Tx	Don	e In	terr	upt i	s di	sabl	ed.										
											1	D	MA	Тx	Don	e In	terr	upt i	s er	nabl	ed.										
					_	17	F	RXD	IE		D	MA	Rx I	Don	e In	terru	upt E	Enat	ble b	oit.											
											0	D	MA	Rx	Dor	ie In	nterr	upt i	is di	isab	led.										
					_						1	D	MA	Rx	Dor	ie In	nterr	upt i	is ei	nabl	ed.										
					_	16	S	SSC	IE		S	S Ec	dge	Cha	ange	e Inte	erru	pt E	nab	le b	it.										
											0	r	nSS	inte	erru	ot is	disa	able	d.												
					_						1	r	nSS	inte	erru	ot is	ena	able	d fo	r bot	th e	dge	s (L-	→ Η,	НЭ	¥L)					
						15	Т	XIE				ans	mit	Inte	rrup	t En	hable	e bit													
										0 Transmit Interrupt is disabled.																					
					-	11					1		I rar	nsm		erru	ipt is	s en	able	ed.											
						14	Г		-	0 Receive Interrupt is disabled.																					
										1 Receive Interrupt is enabled.																					
					-	13	ç	SSM	OD		S	S Ai		Man		outr	put s		ct bi	t.											
					_				55						Juli			5.50													

SP0.CR=0x4000_9004

ICn.DR I²C Data Register

ICn.DR is an 8-bit read/write register. It contains a byte of serial data to be transmitted or a byte which has just been received.

ICn.SR I²C Status Register

ICn.SR is an 8-bit read/write register. It contains the status of I^2C bus interface. Writing to the register clears the status bits except for IMASTER.

IC0.SR=0x4000_A008

7	6	5	4	3	2	1	0
GCALL	TEND	STOP	SSEL	MLOST	BUSY	TMODE	RXACK
0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW

7	GCALL	General call flag
		0 General call is not detected.
		1 General call detected or slave address (ID byte) was sent.
6	TEND	1 Byte transmission complete flag
		0 The transmission is working or not completed.
		1 The transmission is completed.
5	STOP	STOP flag
		0 STOP is not detected.
		1 STOP is detected.
4	SSEL	Slave flag
		0 Slave is not selected.
		1 Slave is selected.
3	MLOST	Mastership lost flag
		0 Mastership is not lost.
		1 Mastership is lost.
2	BUSY	BUSY flag
		0 I ² C bus is in IDLE state.
		1 I ² C bus is busy.
1	TMODE	Transmitter/Receiver mode flag
		0 Receiver mode.
		1 Transmitter mode.
0	RXACK	Rx ACK flag
		0 Rx ACK is not received.
		1 Rx ACK is received.

MP0.PRD MPWM Period Register

The PWM Period Register is a 16-bit register.

			0		Ũ								MP0.P	RD=0x4	000400C
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PER	IOD							
							0x0	002							
							R	N							
				15	PEF	RIOD	1	6-bit P\	NM peri	od. It sł	nould be	larger	than 0x0	010	
				0			(1	f Duty i	s 0x000	0, PWN	1 will no	t work)			

MP0.DUH MPWM Duty UH Register

The PWM U channel duty register is a 16-bit register.

													MP0.DU	JH=0x40	00_4010
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	Y UH							
	0x0001														
	RW														
				15	DU	TY UH		16-bit P	WM Dut	y for U⊦	loutput				
				0			I	t shoule	d be larg	er than	0x0001				
							(If Duty	is 0x000	0, PWN	1 will no	t work)			

MP0.DUL MPWM Duty UL Register

The PWM U channel duty register is a 16-bit register.

			,	0		0							MP0.DU	JL=0x40	00_401C
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	YUL							
							0x0	001							
							R	w							
				15	DU.	TY UL	1	6-bit P\	VM Dut	y for UL	output.				
				0			ľ	t should	be larg	er than	0x0001				
							(lf Duty i	s 0x000	0, PWN	1 will not	t work)			

MP0.DVL MPWM Duty VL Register

The PWM V channel duty register is a 16-bit register.

			-	-		-							MP0.D	/L=0x40	00_4020
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	Y VL							
							0x0	0001							
							R	w							
				15	DU	TY VL	1	I6-bit PV	VM Dut	y for VL	output.				
				0			ľ	t should	be larg	er than	0x0001				
							(if Duty is	s 0x000	0, PWN	1 will not	t work)			

Figure 15.9. PWM Dead-time Operation Timing Diagram (Symmetric Mode)

Figure 15.10 displays an example of dead-time operation in 1-channel asymmetric mode.

Figure 15.10. PWM Dead-Time Operation Timing Diagram (Asymmetric Mode)

The dead-time function is not available for 2-channel symmetric mode. Therefore, the dead condition is generated by each channel's duty control.

MPWM Dead-time Timing Examples for Special Conditions

Figure 15.11 shows the operation of dead-time.

In normal dead-time, dead-time masking is activated at duty match time and the dead-time counter runs. When the dead-time counter reaches the dead time value, the mask is disabled.

Figure 15.17. L-Side Always On (T_{DUTY}='0': Dead-Time Disabled)

Symmetrical Mode vs Asymmetrical Mode

In symmetrical mode, the waveform is symmetrical on both sides of the mid-point of the period. The duty comparison is performed twice in both up and down count period.

Figure 15.18. Symmetrical PWM Timing

Table 16.3 ADC Register Map

Name	Offset	Туре	Description	Reset Value
ADn.MR	0x0000	RW	ADC Mode register	0x00
ADn.CSCR	0x0004	RW	ADC Current Sequence/Channel register	0x00
ADn.CCR	0x0008	RW	ADC Clock Control register	0x80
ADn.TRG	0x000C	RW	ADC Trigger Selection register	0x00
-	0x0010	-	Reserved	
-	0x0014	-	Reserved	
ADn.SCSR	0x0018	RW	ADC Burst mode channel select	0x00
ADn.CR	0x0020	RW	ADC Control register	0x00
ADn.SR	0x0024	RW	ADC Status register	0x00
ADn.IER	0x0028	RW	ADC Interrupt Enable register	0x00
ADn.DDR	0x002C	R	ADCn DMA Data Register	0x00
ADn.DR0	0x0030	R	ADCn Sequence 0 Data register	0x00
ADn.DR1	0x0034	R	ADCn Sequence 1 Data register	0x00
ADn.DR2	0x0038	R	ADCn Sequence 2 Data register	0x00
ADn.DR3	0x003C	R	ADCn Sequence 3 Data register	0x00
ADn.DR4	0x0040	R	ADCn Sequence 4 Data register	0x00
ADn.DR5	0x0044	R	ADCn Sequence 5 Data register	0x00
ADn.DR6	0x0048	R	ADCn Sequence 6 Data register	0x00
ADn.DR7	0x004C	R	ADCn Sequence 7 Data register	0x00

AD*n*.CR ADCn Control Register

The ADCn Control Register controls start or stop ADC conversion operations. This register is an 8-bit register.

ADn.SR ADCn Status Register

The ADC Status Register is a 32-bit register.

7	6	5		4	3	2	1	0				
EOC	ABUSY	DOVRUN		DMAIRQ	TRGIRQ	EOSIRQ	-	EOCIRQ				
0	0	0		0	0	0	-	0				
RO	RO	RO		RO	RC	RC	-	RC				
		7	FOC		ADC End	-of-Conversion	flag					
		I	200		(Start-of- bit , not A	Conversion mad START)	de by ADC_CL	K clears this				
		6	ABUS	SY	g							
				RUN	DMA overrun flag (not interrupt)							
(DMA A				(DMA AC	DMA ACK didn't come until end of next conversion)							
		4	DMA	RQ	DMA don	DMA done received (DMA transfer is completed)						
		3	TRGI	RQ	ADC Trig	ADC Trigger interrupt flag(Write "1" to clear flag)						
		(0: no int / 1: int occu				/ 1: int occurred)					
		2	EOSI	RQ	This flag (Write "1"	on final end of	end of a sequence					
					0 Non	е.						
					1 End	-of-Sequence(b	ourst) Interrupt c	occurred				
0 EOCIRQ This flag will be sequence occu for completion to clear flag)				This flag will be set upon each conversion when a sequence occurs. Use this bit when polling the ADC for completion in single conversion mode. (Write "1" to clear flag)								
			0 None.									
					1 End-of-Conversion Interrupt occurred							

AD0.SR=0x4000_B024, AD1.SR=0x4000_B124