

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	102
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 46x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk30dn512zvmd10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Terminology and guidelines

Field	Description	Values
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm)
CC	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MK30DN512ZVMD10

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2
	Solder temperature, leaded	—	245		

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.4 Voltage and current operating ratings

5.2.2 LVD and POR operating requirements

Table 2. V _{DD} supply LVD and POR operating requirements	Table 2.	V _{DD} supply LVD and POR operating requirements	
--	----------	---	--

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V_{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V_{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±80		mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±60	_	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising thresholds are falling threshold + hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

5.2.3 Voltage and current operating behaviors

Table 4.	Voltage and	current o	perating	behaviors
----------	-------------	-----------	----------	-----------

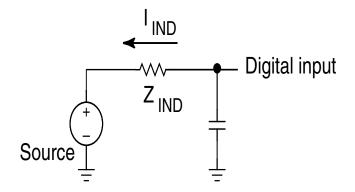

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	—	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$	V _{DD} – 0.5	—	_	V	
	Output high voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	—	_	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -0.6mA	$V_{DD} - 0.5$	—	_	V	
I _{OHT}	Output high current total for all ports	_	_	100	mA	
V _{OL}	Output low voltage — high drive strength					2
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3mA	_	—	0.5	V	
	Output low voltage — low drive strength					-
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	—	0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 0.6mA	—	—	0.5	V	
I _{OLT}	Output low current total for all ports	_	_	100	mA	
I _{INA}	Input leakage current, analog pins and digital pins configured as analog inputs					3, 4
	• $V_{SS} \le V_{IN} \le V_{DD}$					
	All pins except EXTAL32, XTAL32, EXTAL, XTAL	_	0.002	0.5	μA	
	EXTAL (PTA18) and XTAL (PTA19)	_	0.004	1.5	μA	
	• EXTAL32, XTAL32	_	0.075	10	μΑ	
I _{IND}	Input leakage current, digital pins					4, 5
	• $V_{SS} \le V_{IN} \le V_{IL}$					
	All digital pins	_	0.002	0.5	μA	
	• V _{IN} = V _{DD}					
	All digital pins except PTD7	_	0.002	0.5	μA	
	• PTD7	_	0.004	1	μA	
I _{IND}	Input leakage current, digital pins					4, 5, 6
	• $V_{IL} < V_{IN} < V_{DD}$					
	• V _{DD} = 3.6 V		18	26	μA	
	• V _{DD} = 3.0 V		12	49	μA	
	• V _{DD} = 2.5 V		8	13	μA	
	• V _{DD} = 1.7 V	_	3	6	μA	

Table continues on the next page...

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
I _{IND}	Input leakage current, digital pins					4, 5
	• V _{DD} < V _{IN} < 5.5 V	_	1	50	μA	
Z _{IND}	Input impedance examples, digital pins					4, 7
	• V _{DD} = 3.6 V	_	—	48	kΩ	
	• V _{DD} = 3.0 V	—	—	55	kΩ	
	• V _{DD} = 2.5 V	_	—	57	kΩ	
	• V _{DD} = 1.7 V	_	—	85	kΩ	
R _{PU}	Internal pullup resistors	20	35	50	kΩ	8
R _{PD}	Internal pulldown resistors	20	35	50	kΩ	9

Table 4. Voltage and current operating behaviors (continued)

- 1. Typical values characterized at 25° C and VDD = 3.6 V unless otherwise noted.
- 2. Open drain outputs must be pulled to $V_{\text{DD}}.$
- 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 4. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
- 5. Internal pull-up/pull-down resistors disabled.
- 6. Characterized, not tested in production.
- 7. Examples calculated using V_{IL} relation, V_{DD} , and max I_{IND} : $Z_{IND}=V_{IL}/I_{IND}$. This is the impedance needed to pull a high signal to a level below V_{IL} due to leakage when $V_{IL} < V_{IN} < V_{DD}$. These examples assume signal source low = 0 V.
- 8. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 9. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI

K30 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 12 MHz (crystal), f_{SYS} = 96 MHz, f_{BUS} = 48MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins		7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

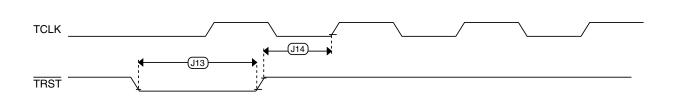
Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode)			
f _{SYS}	System and core clock	_	100	MHz	
f _{BUS}	Bus clock	—	50	MHz	
FB_CLK	FlexBus clock	—	50	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock	—	25	MHz	

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I²C signals.

6.1.2 JTAG electricals


Table 13.	JTAG limited	voltage range	electricals
-----------	--------------	---------------	-------------

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1		ns
JЗ	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	—	ns
J4	TCLK rise and fall times	—	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	0	_	ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1	—	ns
J11	TCLK low to TDO data valid	_	17	ns
J12	TCLK low to TDO high-Z	_	17	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1		ns

Table continues on the next page ...

Peripheral operating requirements and behaviors

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed — over fixed voltage and temperature range of 0–70°C	31.25	_	38.2	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_	± 1.5	± 4.5	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	_	4	—	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external clock minimum frequency — RANGE = 01, 10, or 11	(16/5) x f _{ints_t}	_	—	kHz	
	FI	L				
f _{fll_ref}	FLL reference frequency range	31.25		39.0625	kHz	

Table 15. MCG specifications

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	_	—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—	-		MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—	-	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	-		kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V_{pp}^{5}	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 16. Oscillator DC electrical specifications (continued)

1. V_{DD}=3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x,C_y can be provided by using either the integrated capacitors or by using external components.

4. When low power mode is selected, R_F is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	

Table continues on the next page...

Peripheral operating requirements and behaviors

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	—	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	—	ns	
FB2	Address, data, and control output valid	—	13.5	ns	1
FB3	Address, data, and control output hold	0	_	ns	1
FB4	Data and FB_TA input setup	13.7	—	ns	2
FB5	Data and FB_TA input hold	0.5	—	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{\text{FB}_{-}\text{TA}}.$

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
G	Gain ⁴	• PGAG=0	0.95	1	1.05		$R_{AS} < 100\Omega$
		• PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes		_	4	kHz	
	bandwidth	 < 16-bit modes 	_	_	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	_	-84		dB	$V_{DDA}=3V \\ \pm 100mV, \\ f_{VDDA}=50Hz, \\ 60Hz$
CMRR	Common mode	Gain=1	—	-84	_	dB	V _{CM} =
	rejection ratio	• Gain=64	_	-85	_	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage		_	0.2	_	mV	Output offset = V _{OFS} *(Gain+1)
T _{GSW}	Gain switching settling time		_	_	10	μs	5
E _{IL}	Input leakage error	All modes		I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input signal swing		($\frac{V_{x}V_{DDA} - V_{x}}{Gain}$ x = V _{REFPG})	V	6
SNR	Signal-to-noise	Gain=1	80	90	_	dB	16-bit
	ratio	• Gain=64	52	66	_	dB	differential mode, Average=32
THD	Total harmonic	• Gain=1	85	100	—	dB	16-bit
	distortion	• Gain=64	49	95		dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free	Gain=1	85	105		dB	16-bit
	dynamic range	• Gain=64	53	88	_	dB	differential mode, Average=32, f _{in} =100Hz

Table 30. 16-bit ADC with PGA characteristics (continued)

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

Table 31. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

- 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
- 3. 1 LSB = $V_{reference}/64$

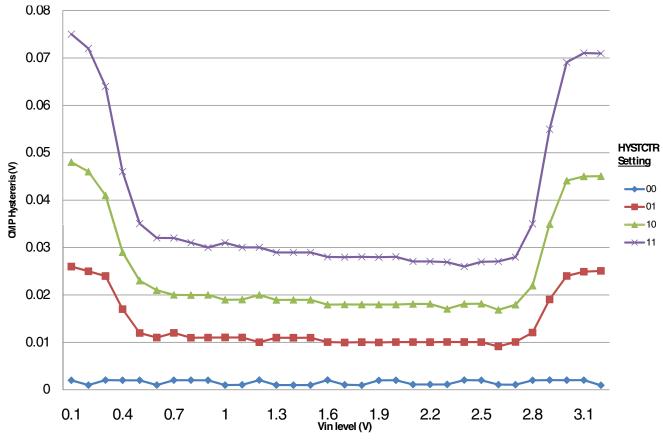


Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)

6.6.3.2 12-bit DAC operating behaviors Table 33. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	—	—	150	μA	
I _{DDA_DACH} P	Supply current — high-speed mode	—	—	700	μA	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	—	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high-speed mode, no load, DAC set to 0x000	—	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error		±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance load = $3 \text{ k}\Omega$	_	—	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	_		
	Low power (SP _{LP})	0.05	0.12	-		
СТ	Channel to channel cross talk	_		-80	dB	
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	_		
	• Low power (SP _{LP})	40	_	-		

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

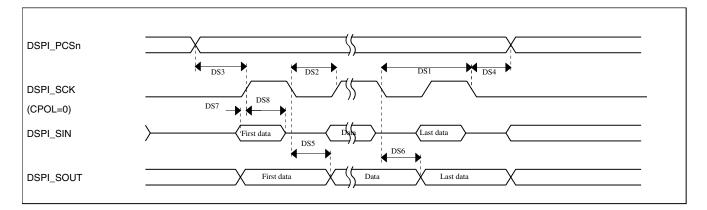

Num	Description	Min.	Max.	Unit	Notes
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0		ns	

Table 40. Master mode DSPI timing (full voltage range) (continued)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 21. DSPI classic SPI timing — master mode

Table 41.	Slave mode	DSPI timing	(full	voltage r	ange)
-----------	------------	-------------	-------	-----------	-------

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	_	6.25	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	19	ns

6. C_b = total capacitance of the one bus line in pF.

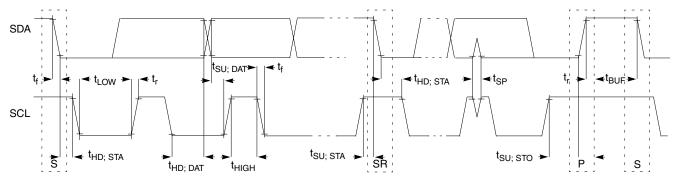


Figure 23. Timing definition for fast and standard mode devices on the I²C bus

6.8.5 UART switching specifications

See General switching specifications.

6.8.6 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Num	Symbol	Description	Min.	Max.	Unit		
	Card input clock						
SD1	fpp	Clock frequency (low speed)	0	400	kHz		
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz		
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz		
	f _{OD}	Clock frequency (identification mode)	0	400	kHz		
SD2	t _{WL}	Clock low time	7	—	ns		
SD3	t _{WH}	Clock high time	7	—	ns		
SD4	t _{TLH}	Clock rise time	_	3	ns		
SD5	t _{THL}	Clock fall time	_	3	ns		
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)			
SD6	t _{OD}	SDHC output delay (output valid)	-5	8.3	ns		
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)						
SD7	t _{ISU}	SDHC input setup time 5 —		—	ns		
SD8	t _{IH}	SDHC input hold time	0	—	ns		

Table 43. SDHC switching specifications

- 2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.
- 3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} 0.15 V
- 4. 2000 pF load LCD, 32 Hz frame frequency

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
144-pin LQFP	98ASS23177W
144-pin MAPBGA	98ASA00222D

8 Pinout

8.1 K30 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

144 LQFP	144 Map Bga	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
-	L5	RESERVED	RESERVED	RESERVED								
-	M5	NC	NC	NC								
1	D3	PTE0	ADC1_SE4a	ADC1_SE4a	PTE0	SPI1_PCS1	UART1_TX	SDHC0_D1	FB_AD27	I2C1_SDA		
2	D2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX	SDHC0_D0	FB_AD26	I2C1_SCL		
3	D1	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_CTS_ b	SDHC0_DCLK	FB_AD25			
4	E4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_RTS_ b	SDHC0_CMD	FB_AD24			
5	E5	VDD	VDD	VDD								
6	F6	VSS	VSS	VSS								

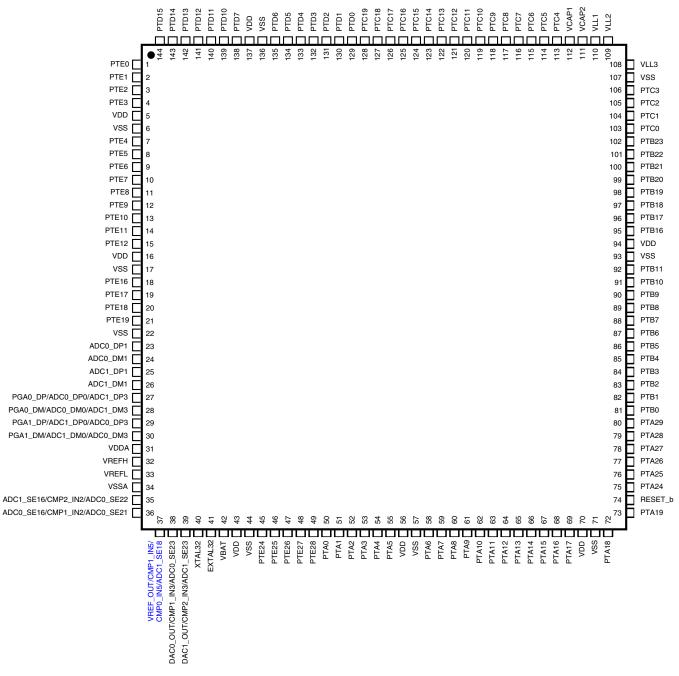


Figure 27. K30 144 LQFP Pinout Diagram

Rev. No.	Date	Substantial Changes
2	3/2011	Many updates throughout
3	3/2011	Added sections that were inadvertently removed in previous revision
4	3/2011	Reworded I _{IC} footnote in "Voltage and Current Operating Requirements" table.
		Added paragraph to "Peripheral operating requirements and behaviors" section.
		Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
5	6/2011	 Changed supported part numbers per new part number scheme Changed <i>DC injection current</i> specs in "Voltage and current operating requirements" table Changed <i>Input leakage current</i> and <i>internal pullup/pulldown resistor</i> specs in "Voltage and current operating behaviors" table Split <i>Low power stop mode current</i> specs by temperature range in "Power consumption operating behaviors" table Changed typical <i>I_{DD VBAT}</i> spec in "Power consumption operating behaviors" table Changed typical <i>I_{DD VBAT}</i> spec to "Device clock specifications" table Changed <i>PLL operating current</i> in "MCG specifications" table Changed <i>PLL operating current</i> in "MCG specifications" table Changed <i>Crystal startup time</i> in "Oscillator DC electrical specifications" table Changed <i>Crystal startup time</i> in "Dscillator frequency specifications" table Changed <i>Operating voltage</i> in "EzPort switching specifications" table Changed <i>ADC asynchronous clock source</i> specs in "16-bit ADC characteristics" table Changed <i>ADC asynchronous clock source</i> specs in "16-bit ADC characteristics" table Changed <i>Input offset voltage</i> and <i>ENOB</i> notes field in "16-bit ADC with PGA characteristics" table Changed <i>Input offset voltage</i> and <i>ENOB</i> notes field in "16-bit ADC with PGA characteristics" table Changed <i>Input offset voltage</i> and <i>ENOB</i> notes field in "16-bit ADC with PGA characteristics" table Changed <i>Code-to-code settling time</i>, <i>DAC output voltage range low</i>, and <i>Temperature coefficient offset voltage</i> in "12-bit DAC output voltage range low, and <i>Temperature coefficient offset voltage</i> in "12-bit DAC output voltage range low, and <i>Temperature coefficient offset voltage</i> in "12-bit DAC output voltage range low, and <i>Temperature coefficient offset voltage</i> in "12-bit DAC output voltage range low, and <i>Temperature coefficient offset voltage</i> in "12-bit DAC output voltage range low, and <i>Temperature coef</i>
		 Changed Reference oscillator current source base current spec and added Low-power current adder footer in "TSI electrical specifications" table Added LCD glass capacitance footnote

Table 50. Revision History (continued)

Table continues on the next page...

Rev. No.	Date	Substantial Changes
6	01/2012	 Added AC electrical specifications. Replaced TBDs with silicon data throughout. In "Power mode transition operating behaviors" table, removed entry times. Updated "EMC radiated emissions operating behaviors" to remove SAE level and also added data for 144LQFP. Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram". Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes" figures. Updated I_{DD_RUN} numbers in 'Power consumption operating behaviors' section. Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run mode supply current vs. core frequency — all peripheral clocks disabled' figure. In 'Voltage reference electrical specifications' section, updated C_L, V_{tdrift}, and V_{vdrift} values. In 'LCD electrical characteristics' section, updated V_{IREG} and Δ_{RTRIM} values.
7	02/2013	 In "ESD handling ratings", added a note for I_{LAT}. Updated "Voltage and current operating requirements". Updated "Voltage and current operating behaviors". Updated "Power mode transition operating behaviors" to add MAPBGA data. In "MCG specifications", updated the description of f_{ints_t}. In "16-bit ADC operating conditions", updated the max spec of V_{ADIN}. In "16-bit ADC electrical characteristics", updated the temp sensor slope and voltage specs. Updated "I2C switching specifications". In "SDHC specifications", removed the operating voltage limits and updated the SD1 and SD6 specs. In "I2S switching specifications", added separate specification tables for the full operating voltage range.

Table 50. Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2011–2013 Freescale Semiconductor, Inc.

Document Number: K30P144M100SF2 Rev. 7, 02/2013