


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                     |
|----------------------------|------------------------------------------------------------|
| Core Processor             | -                                                          |
| Core Size                  | -                                                          |
| Speed                      | -                                                          |
| Connectivity               | -                                                          |
| Peripherals                | -                                                          |
| Number of I/O              | -                                                          |
| Program Memory Size        | -                                                          |
| Program Memory Type        | -                                                          |
| EEPROM Size                | -                                                          |
| RAM Size                   | -                                                          |
| Voltage - Supply (Vcc/Vdd) | -                                                          |
| Data Converters            | -                                                          |
| Oscillator Type            | -                                                          |
| Operating Temperature      | -                                                          |
| Mounting Type              | -                                                          |
| Package / Case             | -                                                          |
| Supplier Device Package    | -                                                          |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08su16vfk |
|                            |                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Ordering information**

| Part Number   | Mer        | Maximum number of I\O's |    |
|---------------|------------|-------------------------|----|
|               | Flash (KB) | SRAM (Byte)             |    |
| MC9S08SU16VFK | 16         | 768                     | 17 |
| MC9S08SU8VFK  | 8          | 768                     | 17 |

#### **Related resources**

| Туре                | Description                                                                                                                   | Resource                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Selector<br>Guide   | The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.    | Solution Advisor        |
| Reference<br>Manual | The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. <sup>1</sup> | MC9S08SU16RM            |
| Data Sheet          | The Data Sheet includes electrical characteristics and signal connections.                                                    | MC9S08SU16 <sup>1</sup> |
| Chip Errata         | The chip mask set Errata provides additional or corrective information for a particular device mask set.                      | xN88M <sup>2</sup>      |
| Package<br>drawing  | Package dimensions are provided in package drawings.                                                                          | QFN 24-pin: 98ASA00602D |

1. To find the associated resource, go to nxp.com and perform a search using this term.

2. To find the associated resource, go to nxp.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Figure 1 shows the functional modules in the chip.

# **Table of Contents**

| 1 | Ratin | gs      |                                             | 5  |
|---|-------|---------|---------------------------------------------|----|
|   | 1.1   | Therm   | al handling ratings                         | 5  |
|   | 1.2   | Moistu  | re handling ratings                         | 5  |
|   | 1.3   | ESD h   | andling ratings                             | 5  |
|   | 1.4   | Voltag  | e and current operating ratings             | 6  |
| 2 | Gene  |         |                                             |    |
|   | 2.1   | Nonsw   | vitching electrical specifications          | 7  |
|   |       | 2.1.1   | DC characteristics                          | 7  |
|   |       | 2.1.2   | Supply current characteristics              | 12 |
|   |       | 2.1.3   |                                             |    |
|   | 2.2   | Switch  | ing specifications                          | 15 |
|   |       | 2.2.1   | Control timing                              | 15 |
|   |       | 2.2.2   | FTM module timing                           | 16 |
|   | 2.3   | Therm   | al specifications                           | 17 |
|   |       | 2.3.1   | Thermal operating requirements              | 17 |
|   |       | 2.3.2   | Thermal characteristics                     | 18 |
| 3 | Perip | heral o | perating requirements and behaviors         | 18 |
|   | 3.1   | ICS ch  | aracteristics                               | 18 |
|   | 3.2   | NVM s   | pecifications                               | 19 |
|   | 3.3   | Analog  | ]                                           | 20 |
|   |       | 3.3.1   | ADC characteristics                         | 20 |
|   |       | 3.3.2   | CMP and 6-bit DAC electrical specifications | 23 |
|   |       | 3.3.3   | GDU characteristics                         | 26 |
|   | 3.4   | Comm    | unication interfaces                        | 29 |
|   |       |         |                                             |    |

|   |        | 3.4.1 Inter-Integrated Circuit Interface (I2C) timing2 | 9 |
|---|--------|--------------------------------------------------------|---|
| 4 | Dime   | nsions                                                 | 0 |
|   | 4.1    | Obtaining package dimensions 3                         | 0 |
| 5 | Pinou  | ıt3                                                    | 0 |
|   | 5.1    | Signal multiplexing and pin assignments3               | 0 |
|   | 5.2    | Pinout                                                 | 2 |
| 6 | Part i | dentification3                                         | 2 |
|   | 6.1    | Description                                            | 2 |
|   | 6.2    | Format3                                                | 3 |
|   | 6.3    | Fields                                                 | 3 |
|   | 6.4    | Example                                                |   |
| 7 | Term   | inology and guidelines3                                | 3 |
|   | 7.1    | Definition: Operating requirement3                     | 3 |
|   | 7.2    | Definition: Operating behavior3                        | 4 |
|   | 7.3    | Definition: Attribute                                  | 4 |
|   | 7.4    | Definition: Rating                                     | 5 |
|   | 7.5    | Result of exceeding a rating                           | 5 |
|   | 7.6    | Relationship between ratings and operating             |   |
|   |        | requirements3                                          | 6 |
|   | 7.7    | Guidelines for ratings and operating requirements3     | 6 |
|   | 7.8    | Definition: Typical value                              | 6 |
|   | 7.9    | Typical value conditions                               | 7 |
|   | 7.10   | Parameter Classification                               | 8 |
| 8 | Revis  | ion history3                                           | 8 |

# 1 Ratings

### **1.1 Thermal handling ratings**

| Symbol           | Description                   | Min. | Max. | Unit | Notes |
|------------------|-------------------------------|------|------|------|-------|
| T <sub>STG</sub> | Storage temperature           | -55  | 150  | °C   | 1     |
| T <sub>SDR</sub> | Solder temperature, lead-free | _    | 260  | °C   | 2     |

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

### 1.2 Moisture handling ratings

| Symbol | Description                | Min. | Max. | Unit | Notes |
|--------|----------------------------|------|------|------|-------|
| MSL    | Moisture sensitivity level |      | 3    |      | 1     |

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

## **1.3 ESD handling ratings**

| Symbol           | Description                                           | Min.  | Max.  | Unit | Notes |
|------------------|-------------------------------------------------------|-------|-------|------|-------|
| V <sub>HBM</sub> | Electrostatic discharge voltage, human body model     | -2000 | +2000 | V    | 1     |
| V <sub>CDM</sub> | Electrostatic discharge voltage, charged-device model | -500  | +500  | V    | 2     |
| I <sub>LAT</sub> | Latch-up current at ambient temperature of 105°C      | -100  | +100  | mA   |       |

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

# 2 General

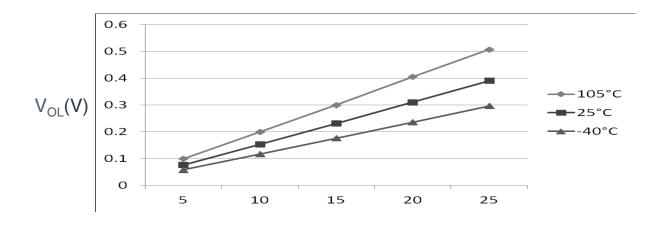
## 2.1 Nonswitching electrical specifications

## 2.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

| Symbol                | С                                                                                                              |                                                              | Descriptions                                                    |                                                          | Min                    | Typical <sup>1</sup> | Max                   | Unit |
|-----------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|------------------------|----------------------|-----------------------|------|
| —                     | _                                                                                                              | Oper                                                         | ating voltage                                                   | — 4.5 —                                                  |                        | 18                   | V                     |      |
| V <sub>OH</sub>       | Ρ                                                                                                              | Output high<br>voltage                                       | All I/O pins,<br>standard-drive<br>strength                     | 5 V, I <sub>load</sub> =<br>-5 mA                        | V <sub>DDX</sub> - 0.8 | _                    | _                     | V    |
|                       | Р                                                                                                              |                                                              | High current drive<br>pins, high-drive<br>strength <sup>2</sup> | 5 V, I <sub>load</sub> =<br>-20 mA                       | V <sub>DDX</sub> - 0.8 | _                    | -                     | V    |
| I <sub>OHT</sub>      | D                                                                                                              | Output high current                                          | Max total I <sub>OH</sub> for all<br>ports                      | 5 V                                                      | —                      | _                    | -100                  | mA   |
| V <sub>OL</sub>       | P     Output low<br>voltage     All I/O pins,<br>standard-drive<br>strength     5 V, I <sub>load</sub> =     — |                                                              | —                                                               | _                                                        | 0.8                    | V                    |                       |      |
|                       | Р                                                                                                              |                                                              | High current drive<br>pins, high-drive<br>strength <sup>2</sup> | 5 V, I <sub>load</sub><br>=20 mA                         | —                      | _                    | 0.8                   | V    |
| I <sub>OLT</sub>      | D                                                                                                              | Output low current                                           | Max total I <sub>OL</sub> for all ports                         |                                                          |                        | —                    | 100                   | mA   |
| V <sub>IH</sub>       | Р                                                                                                              | Input high                                                   | All digital inputs                                              | V <sub>DDX</sub> >4.5V                                   | $0.70 \times V_{DDX}$  | _                    | _                     | V    |
|                       | С                                                                                                              | voltage                                                      |                                                                 | V <sub>DDX</sub> >2.7V                                   | $0.75 \times V_{DDX}$  | _                    | _                     |      |
| V <sub>IL</sub>       | Р                                                                                                              | Input low                                                    | All digital inputs                                              | V <sub>DDX</sub> >4.5V                                   | —                      | _                    | $0.30 \times V_{DDX}$ | V    |
|                       | С                                                                                                              | voltage                                                      |                                                                 | V <sub>DDX</sub> >2.7V                                   | _                      | _                    | $0.35 \times V_{DDX}$ |      |
| V <sub>hys</sub>      | С                                                                                                              | Input<br>hysteresis                                          | All digital inputs                                              | _                                                        | $0.06 \times V_{DDX}$  | —                    | -                     | mV   |
| <sub>In</sub>         | Ρ                                                                                                              | Input leakage<br>current                                     | All input only pins<br>(per pin)                                |                                                          |                        | 1                    | μA                    |      |
| ll <sub>oztot</sub> l | С                                                                                                              | Total leakage<br>combined for<br>all inputs and<br>Hi-Z pins | All input only and I/O                                          | V <sub>IN</sub> = V <sub>DDX</sub><br>or V <sub>SS</sub> | —                      |                      | 2                     | μA   |

Table 1. DC characteristics


| Symbol                       | С |                             | Descriptions                                                                      |                                    | Min  | Typical <sup>1</sup> | Max  | Unit |
|------------------------------|---|-----------------------------|-----------------------------------------------------------------------------------|------------------------------------|------|----------------------|------|------|
| R <sub>PU</sub>              | Ρ | Pullup<br>resistors         | All digital inputs,<br>when enabled (all<br>I/O pins other than<br>PTA4 and PTA5) |                                    | 30.0 | _                    | 50.0 | kΩ   |
| R <sub>PU</sub> <sup>3</sup> | Р | Pullup<br>resistors         | PTA4 and PTA5 pin                                                                 | —                                  | 30.0 | _                    | 60.0 | kΩ   |
| R <sub>PD</sub> <sup>4</sup> | Ρ | Pulldown resistors          | PTB3, PTB4 and<br>PTB5 pin                                                        | —                                  | 30   | 40                   | 50   | kΩ   |
| I <sub>IC</sub>              | D | DC injection                | Single pin limit                                                                  | $V_{\rm IN} < V_{\rm SS},$         | -2   | _                    | 2    | mA   |
|                              |   | current <sup>5, 6, 7</sup>  | Total MCU limit,<br>includes sum of all<br>stressed pins                          | V <sub>IN</sub> > V <sub>DDX</sub> | -5   | _                    | 25   |      |
| C <sub>In</sub>              | С | Input capacitance, all pins |                                                                                   | —                                  | _    | _                    | 7    | pF   |
| V <sub>RAM</sub>             | С | RAM re                      | tention voltage                                                                   | —                                  | 2.0  |                      |      | V    |

### Table 1. DC characteristics (continued)

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB3, PTB4, PTB5, and PTB7 are high drive pins, and support ultra-high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. The specified resistor value is the actual value internal to the device. The pulldown value may appear higher when measured externally on the pin.
- 5. All functional non-supply pins, except PTA4 and PTA5, are internally clamped to  $V_{SS}$  and  $V_{DDX}$ .
- 6. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 7. Power supply must maintain regulation within operating V<sub>DD</sub> range during instantaneous and operating maximum current conditions. If the positive injection current (V<sub>In</sub> > V<sub>DD</sub>) is higher than I<sub>DD</sub>, the injection current may flow out of V<sub>DD</sub> and could result in external power supply going out of regulation. Ensure that external V<sub>DD</sub> load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

| Symbol            | Description                         | Min.                                                 | Typical<br>1 | Max.             | Unit  |    |
|-------------------|-------------------------------------|------------------------------------------------------|--------------|------------------|-------|----|
| V <sub>DDX</sub>  | Output voltage V <sub>DDX</sub>     | Run mode 4.5 V≤ V <sub>DD</sub> <5.3 V               | 4.20         | —                | 5.25  | V  |
|                   |                                     | Run mode V <sub>DD</sub> ≥5.3 V                      | 4.75         | 4.99             | 5.25  | V  |
|                   |                                     | Stop mode <sup>2</sup>                               | 2.5          | —                | 5.75  | V  |
| I <sub>DDX</sub>  | Load current V <sub>DDX</sub>       | Run mode 4.5V $\leq$ V <sub>DD</sub> <5.3 V          | 0            | —                | 28    | mA |
|                   |                                     | Run mode V <sub>DD</sub> ≥5.3 V                      | 0            | —                | 50    | mA |
|                   |                                     | Stop mode <sup>2</sup>                               | 0            | —                | 5     | mA |
| V <sub>REFH</sub> | Output voltage<br>V <sub>REFH</sub> | $V_{DD} \ge 4.5 V$                                   | 4.166        | 4.2 <sup>3</sup> | 4.234 | V  |
| _                 | V <sub>REFH</sub> accuracy          | V <sub>DD</sub> ≥V <sub>REFH</sub> + 0.3, 0—70 °C    | —            | —                | 0.8   | %  |
|                   |                                     | V <sub>DD</sub> ≥V <sub>REFH</sub> + 0.3, -40—105 °C | —            | —                | 1.0   | %  |
| I <sub>REFH</sub> | Output current<br>V <sub>REFH</sub> | V <sub>DD</sub> ≥V <sub>REFH</sub> + 0.3             | 0            | —                | 5     | mA |

### Table 2. Power supply electrical characteristics



I<sub>OL</sub>(mA)

Figure 6. Typical  $I_{OL}$  Vs.  $V_{OL}$  (high drive strength) ( $V_{DDX} = 5 V$ )

### 2.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

| С | Parameter                                           | Symbol           | Core/Bus<br>Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max | Unit | Temp          |  |  |
|---|-----------------------------------------------------|------------------|------------------|---------------------|----------------------|-----|------|---------------|--|--|
| С | Run supply current, FEI                             | RI <sub>DD</sub> | 40/20 MHz        | 18                  | 11.00                | —   | mA   | -40 to 105 °C |  |  |
| С | mode, all clock gate is off,<br>code run from flash |                  | 20/10 MHz        |                     | 7.50                 | —   |      |               |  |  |
|   |                                                     |                  | 20/1 MHz         |                     | 6.00                 | _   |      |               |  |  |
| С |                                                     |                  | 20/20 MHz        | 12                  | 9.15                 | _   |      |               |  |  |
| С |                                                     |                  | 20/10 MHz        |                     | 7.50                 | —   |      |               |  |  |
|   |                                                     |                  |                  |                     | 20/1 MHz             |     | 5.95 | _             |  |  |
|   |                                                     |                  | 20/20 MHz        | 5.3                 | 9.10                 | _   |      |               |  |  |
|   |                                                     |                  | 20/10 MHz        |                     | 7.45                 | —   |      |               |  |  |
|   |                                                     |                  | 20/1 MHz         |                     | 5.90                 | _   | 1    |               |  |  |
|   |                                                     |                  | 20/20 MHz        | 4.5                 | 9.35                 | —   |      |               |  |  |
|   |                                                     |                  | 20/10 MHz        |                     | 7.65                 | _   |      |               |  |  |
|   |                                                     |                  | 20/1 MHz         |                     | 6.15                 |     |      |               |  |  |

 Table 3.
 Supply current characteristics

| С | Parameter                                     | Symbol | Core/Bus<br>Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max | Unit | Temp          |
|---|-----------------------------------------------|--------|------------------|---------------------|----------------------|-----|------|---------------|
| С |                                               |        | 20/10 MHz        |                     | 6.05                 | _   |      |               |
|   |                                               |        | 20/1 MHz         |                     | 4.40                 | —   |      |               |
| С | -                                             |        | 20/20 MHz        | 12                  | 7.70                 | —   |      |               |
|   |                                               |        | 20/10 MHz        |                     | 6.00                 | —   |      |               |
|   |                                               |        | 20/1 MHz         |                     | 4.40                 | —   |      |               |
|   |                                               |        | 20/20 MHz        | 5.3                 | 7.65                 | —   |      |               |
|   |                                               |        | 20/10 MHz        |                     | 5.95                 | —   |      |               |
|   |                                               |        | 20/1 MHz         |                     | 4.35                 | —   |      |               |
|   |                                               |        | 20/20 MHz        | 4.5                 | 7.85                 | —   |      |               |
|   |                                               |        | 20/10 MHz        |                     | 6.20                 | —   |      |               |
|   |                                               |        | 20/1 MHz         |                     | 4.60                 |     |      |               |
| С | Stop mode supply current,                     | SIDD   | _                | 18                  | 19.85                |     | μA   | -40 to 105 °C |
| С | no clocks active (except 20<br>kHz LPO clock) |        |                  | 12                  | 19.05                | —   |      |               |
| С |                                               |        |                  | 5.3                 | 18.25                |     |      |               |
| С |                                               |        |                  | 4.5                 | 17.65                | —   |      |               |
| С | ADC adder to Stop                             |        | _                | 18                  | 88.80                | —   | μA   | -40 to 105 °C |
| С | ADLPC = 1                                     |        |                  | 12                  | 87.95                | —   |      |               |
| С | ADLSMP = 1                                    |        |                  | 5.3                 | 86.70                | _   |      |               |
| С | ADCO = 1                                      |        |                  | 4.5                 | 85.40                |     |      |               |

1. Data in Typical column was characterized at 25 °C or is typical recommended value.

### 2.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

### 2.1.3.1 EMC radiated emissions operating behaviors

### NOTE

If using external reset switch to design hardware board, connect two 0.1  $\mu$ F decoupling capacitors on RESET pin for

| С | Characteristic                                                                                                              | Symbol               | Min <sup>1</sup> | Typical <sup>2</sup> | Max <sup>3</sup> | Unit <sup>4</sup> |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|----------------------|------------------|-------------------|
| D | Program Flash (2 word)                                                                                                      | t <sub>PGM2</sub>    | 0.12             | 0.13                 | 0.31             | ms                |
| D | Program Flash (4 word)                                                                                                      | t <sub>PGM4</sub>    | 0.21             | 0.21                 | 0.49             | ms                |
| D | Program Once                                                                                                                | t <sub>PGMONCE</sub> | 0.20             | 0.21                 | 0.21             | ms                |
| D | Erase All Blocks                                                                                                            | t <sub>ERSALL</sub>  | 95.42            | 100.18               | 100.30           | ms                |
| D | Erase Flash Block                                                                                                           | t <sub>ERSBLK</sub>  | 95.42            | 100.18               | 100.30           | ms                |
| D | Erase Flash Sector                                                                                                          | t <sub>ERSPG</sub>   | 19.10            | 20.05                | 20.09            | ms                |
| D | Unsecure Flash                                                                                                              | t <sub>UNSECU</sub>  | 95.42            | 100.19               | 100.31           | ms                |
| D | Verify Backdoor Access Key                                                                                                  | t <sub>VFYKEY</sub>  | _                | _                    | 482              | t <sub>cyc</sub>  |
| D | Set User Margin Level                                                                                                       | t <sub>MLOADU</sub>  |                  | _                    | 415              | t <sub>cyc</sub>  |
| С | FLASH Program/erase endurance $T_L$ to $T_H$ = -40 °C to 105 °C                                                             | N <sub>FLPE</sub>    | 10 k             | 100 k                |                  | Cycles            |
| С | Data retention at an average junction<br>temperature of T <sub>Javg</sub> = 85°C after up to<br>10,000 program/erase cycles | t <sub>D_ret</sub>   | 15               | 100                  | _                | years             |

| Table 10. | Flash characteristics | (continued) |
|-----------|-----------------------|-------------|
|-----------|-----------------------|-------------|

1. Minimum times are based on maximum  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$ 

2. Typical times are based on typical  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$ 

3. Maximum times are based on typical  $f_{\text{NVMOP}}$  and typical  $f_{\text{NVMBUS}}$  plus aging

4.  $t_{cyc} = 1 / f_{NVMBUS}$ 

Program and erase operations do not require any special power sources other than the normal  $V_{DDX}$  supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

### 3.3 Analog

### 3.3.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

| Characteri<br>stic       | Conditions | Symb              | Min               | Typ <sup>1</sup> | Max               | Unit | Comment |
|--------------------------|------------|-------------------|-------------------|------------------|-------------------|------|---------|
| Input<br>voltage         |            | V <sub>ADIN</sub> | V <sub>REFL</sub> | _                | V <sub>REFH</sub> | V    |         |
| Input<br>capacitanc<br>e |            | C <sub>ADIN</sub> | _                 | 4.5              | 5.5               | pF   |         |
| Input<br>resistance      |            | R <sub>ADIN</sub> | _                 | 3                | 5                 | kΩ   | —       |

| Characteri<br>stic               | Conditions                                                                  | Symb              | Min | Typ <sup>1</sup> | Max     | Unit | Comment            |
|----------------------------------|-----------------------------------------------------------------------------|-------------------|-----|------------------|---------|------|--------------------|
| Analog<br>source<br>resistance   | 12-bit mode<br>• f <sub>ADCK</sub> > 4 MHz<br>• f <sub>ADCK</sub> < 4 MHz   | R <sub>AS</sub>   | _   | _                | 2<br>5  | kΩ   | External to<br>MCU |
|                                  | 10-bit mode<br>• $f_{ADCK} > 4 \text{ MHz}$<br>• $f_{ADCK} < 4 \text{ MHz}$ |                   |     | _                | 5<br>10 |      |                    |
|                                  | 8-bit mode<br>(all valid f <sub>ADCK</sub> )                                |                   | _   | _                | 10      |      |                    |
| ADC                              | High speed (ADLPC=0)                                                        | f <sub>ADCK</sub> | 0.4 | _                | 8.0     | MHz  | —                  |
| conversion<br>clock<br>frequency | Low power (ADLPC=1)                                                         |                   | 0.4 | —                | 4.0     |      |                    |

 Table 11. 5 V 12-bit ADC operating conditions (continued)

 Typical values assume V<sub>DDA</sub> = 5.0 V, Temp = 25°C, f<sub>ADCK</sub>=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

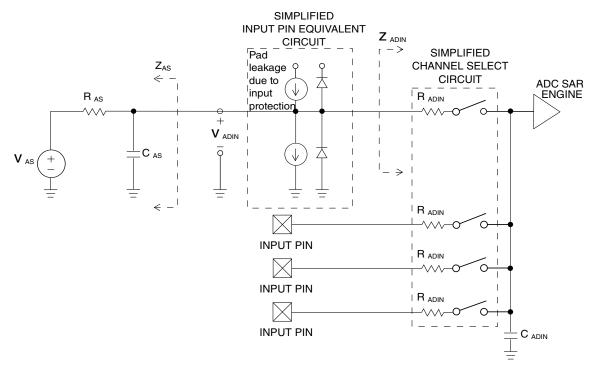



Figure 11. ADC input impedance equivalency diagram

| Table 12. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REF}$ | <sub>FL</sub> = V <sub>SSA</sub> ) |
|-------------------------------------------------------------------------|------------------------------------|
|-------------------------------------------------------------------------|------------------------------------|

| Conditions | С          | Symb             | Min | Typ <sup>1</sup> | Max | Unit |
|------------|------------|------------------|-----|------------------|-----|------|
|            | Т          | I <sub>DDA</sub> | —   | 133              | —   | μA   |
|            |            |                  |     |                  |     |      |
|            |            |                  |     |                  |     |      |
|            | Conditions | Conditions C     |     |                  |     |      |

| Characteristic                          | Conditions                   | С | Symb               | Min  | Typ <sup>1</sup> | Max  | Unit             |
|-----------------------------------------|------------------------------|---|--------------------|------|------------------|------|------------------|
| ADCO = 1                                |                              |   |                    |      |                  |      |                  |
| Supply current                          |                              | Т | I <sub>DDA</sub>   | _    | 218              | _    | μA               |
| ADLPC = 1                               |                              |   |                    |      |                  |      |                  |
| ADLSMP = 0                              |                              |   |                    |      |                  |      |                  |
| ADCO = 1                                |                              |   |                    |      |                  |      |                  |
| Supply current                          |                              | Т | I <sub>DDA</sub>   | _    | 327              | _    | μA               |
| ADLPC = 0                               |                              |   |                    |      |                  |      |                  |
| ADLSMP = 1                              |                              |   |                    |      |                  |      |                  |
| ADCO = 1                                |                              |   |                    |      |                  |      |                  |
| Supply current                          |                              | Т | I <sub>DDAD</sub>  | -    | 582              | 990  | μA               |
| ADLPC = 0                               |                              |   |                    |      |                  |      |                  |
| ADLSMP = 0                              |                              |   |                    |      |                  |      |                  |
| ADCO = 1                                |                              |   |                    |      |                  |      |                  |
| Supply current                          | Stop, reset, module off      | Т | I <sub>DDA</sub>   | -    | 0.011            | 1    | μΑ               |
| ADC asynchronous<br>clock source        | High speed (ADLPC<br>= 0)    | Т | f <sub>ADACK</sub> | 2    | 3.3              | 5    | MHz              |
|                                         | Low power (ADLPC<br>= 1)     |   |                    | 1.25 | 2                | 3.3  |                  |
| Conversion time<br>(including sample    | Short sample<br>(ADLSMP = 0) | Т | t <sub>ADC</sub>   | _    | 20               | —    | ADCK<br>cycles   |
| time)                                   | Long sample<br>(ADLSMP = 1)  |   |                    | _    | 40               |      |                  |
| Sample time                             | Short sample<br>(ADLSMP = 0) | Т | t <sub>ADS</sub>   | _    | 3.5              |      | ADCK<br>cycles   |
|                                         | Long sample<br>(ADLSMP = 1)  |   |                    | _    | 23.5             | _    |                  |
| Total unadjusted                        | 12-bit mode                  | Т | E <sub>TUE</sub>   | _    | ±5.5             |      | LSB <sup>4</sup> |
| Error <sup>2, 3</sup>                   | 10-bit mode                  | Т |                    | _    | ±1.7             | ±2.0 |                  |
|                                         | 8-bit mode                   | Т |                    | —    | ±0.9             | ±1.0 |                  |
| Differential Non-                       | 12-bit mode                  | Т | DNL                | _    | 1.4              | _    | LSB <sup>4</sup> |
| Linearity <sup>3</sup>                  | 10-bit mode <sup>5</sup>     | Р |                    | _    | 0.5              | —    |                  |
|                                         | 8-bit mode <sup>5</sup>      | Т |                    | _    | 0.15             |      |                  |
| Integral Non-<br>Linearity <sup>3</sup> | 12-bit mode                  | Т | INL                | —    | 1.4              |      | LSB <sup>4</sup> |
|                                         | 10-bit mode                  | Т |                    |      | 0.5              |      |                  |
|                                         | 8-bit mode                   | Т |                    |      | 0.15             |      |                  |
| Zero-scale error <sup>6</sup>           | 12-bit mode                  | С | E <sub>ZS</sub>    | _    | ±2.0             | _    | LSB <sup>4</sup> |
|                                         | 10-bit mode                  | Т |                    |      | ±0.25            | ±1.0 | _                |
|                                         | 8-bit mode                   | Т |                    |      | ±0.65            | ±1.0 |                  |
| Full-scale error <sup>7</sup>           | 12-bit mode                  | Т | E <sub>FS</sub>    | _    | ±2.5             |      | LSB <sup>4</sup> |

| Table 12. | 12-bit ADC Characteristics | ; (V <sub>REFH</sub> = V <sub>DDA</sub> , | , V <sub>REFL</sub> = V <sub>SSA</sub> | ) (continued) |
|-----------|----------------------------|-------------------------------------------|----------------------------------------|---------------|
|-----------|----------------------------|-------------------------------------------|----------------------------------------|---------------|

| Characteristic                   | Conditions    | С | Symb                | Min | Typ <sup>1</sup>                  | Max  | Unit             |
|----------------------------------|---------------|---|---------------------|-----|-----------------------------------|------|------------------|
|                                  | 10-bit mode   | Т |                     | —   | ±0.5                              | ±1.0 |                  |
|                                  | 8-bit mode    | Т |                     | _   | ±0.5                              | ±1.0 |                  |
| Quantization error               | ≤12 bit modes | D | EQ                  | _   | —                                 | ±0.5 | LSB <sup>4</sup> |
| Input leakage error <sup>8</sup> | all modes     | D | EIL                 |     | I <sub>In</sub> * R <sub>AS</sub> |      | mV               |
| Temp sensor slope                | -40°C– 25°C   | D | m                   | _   | 3.266                             | _    | mV/°C            |
|                                  | 25°C– 125°C   | 1 |                     |     | 3.638                             | _    |                  |
| Temp sensor<br>voltage           | 25°C          | D | V <sub>TEMP25</sub> | _   | 1.36                              | —    | V                |

Table 12. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDA}$ ,  $V_{REFL} = V_{SSA}$ ) (continued)

1. Typical values assume  $V_{DDX} = 5.0 \text{ V}$ ,  $V_{DD} \ge 5.3 \text{ V}$ , Temp = 25°C,  $f_{ADCK}=1.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.

 To get better ADC performance: For the application case of V<sub>DD</sub><5.3 V, suggest to select V<sub>REFH</sub> as ADC reference. For the application case VDD≥5.3 V, suggest to select V<sub>DDX</sub> as ADC reference.

- 4. 1 LSB =  $(V_{\text{REFH}} V_{\text{REFL}})/2^N$
- 5. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 6.  $V_{ADIN} = V_{SSA}$
- 7.  $V_{ADIN} = V_{DDA}$
- 8.  $I_{In}$  = leakage current (refer to DC characteristics)

# 3.3.2 CMP and 6-bit DAC electrical specifications

#### Table 13. Comparator and 6-bit DAC electrical specifications

| Symbol             | Description                        |                        | Min.                   | Тур. | Max.             | Unit |
|--------------------|------------------------------------|------------------------|------------------------|------|------------------|------|
| V <sub>DDX</sub>   | Supply voltage                     |                        | 4.20                   | 5.0  | 5.25             | V    |
| I <sub>DDHS</sub>  | Supply current, high-spee PMODE=1) | d mode (EN=1,          | —                      | 100  | _                | μΑ   |
| I <sub>DDLS</sub>  | Supply current, low-speed          | I mode (EN=1, PMODE=0) | —                      | 18   | 20               | μA   |
| V <sub>AIN</sub>   | Analog input voltage               |                        | V <sub>SS</sub> – 0.3  |      | V <sub>DDX</sub> | V    |
| V <sub>AIO</sub>   | Analog input offset voltage        | e                      | _                      |      | 40               | mV   |
| V <sub>H</sub>     | Analog comparator<br>hysteresis    | CR0[HYSTCTR] = 0       | _                      | 15   | 20               | mV   |
|                    |                                    | CR0[HYSTCTR] = 1       | _                      | 20   | 30               | mV   |
| V <sub>CMPOh</sub> | Output high                        | 1                      | V <sub>DDX</sub> – 0.5 | _    |                  | V    |
| V <sub>CMPOI</sub> | Output low                         |                        | _                      |      | 0.5              | V    |
| I <sub>ALKG</sub>  | Analog input leakage curr          | ent                    | _                      |      | 20               | nA   |
| t <sub>DHS</sub>   | Propagation delay, high-           | 200 mV delta voltage   | _                      | 70   | 120              | ns   |
|                    | speed mode (EN=1,<br>PMODE=1)      | 100 mV delta voltage   | _                      | 100  | 150              | ns   |
|                    |                                    | 50 mV delta voltage    | _                      | 200  | 250              | ns   |
| t <sub>DLS</sub>   | Propagation delay, low-            | 200 mV delta voltage   | _                      | 400  | 600              | ns   |
|                    | speed mode (EN=1,<br>PMODE=0)      | 100 mV delta voltage   | —                      | 600  | 800              | ns   |

| Symbol                | Description                                                                                                    |                                                            | Min. | Тур. | Max. | Unit | Note |
|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|------|------|------|------|
|                       |                                                                                                                | I <sub>Load</sub> =15 mA                                   |      | 317  | 590  | mV   |      |
|                       |                                                                                                                | I <sub>Load</sub> =20 mA                                   |      | 330  | 600  | mV   |      |
|                       | DC VOL for LS, V <sub>DDX</sub> =5                                                                             | I <sub>Load</sub> =5 mA                                    | _    | 290  | 570  | mV   |      |
|                       | V, V <sub>DD</sub> =12 V                                                                                       | I <sub>Load</sub> =15 mA                                   |      | 320  | 580  | mV   |      |
|                       |                                                                                                                | I <sub>Load</sub> =20 mA                                   | _    | 335  | 600  | mV   |      |
| I <sub>ОН</sub>       | $V_{DDX}$ =5 V, $V_{DD}$ =12 V,<br>$V_{Out}$ = $V_{DD}$ -0.4V                                                  | DC IOH at lowest strength for HS                           | _    | 7.45 | -    | mA   |      |
|                       | $V_{DDX}$ =5 V, $V_{DD}$ =12 V,<br>$V_{Out}$ = $V_{DDX}$ -0.4V                                                 | DC IOH at lowest<br>strength for LS                        | _    | 7.45 | -    | mA   |      |
| I <sub>OL</sub>       | V <sub>DDX</sub> =5 V, V <sub>DD</sub> =12 V<br>V <sub>Out</sub> =V <sub>clamp</sub> +0.4V                     | DC IOL at lowest strength for HS                           | _    | 6.45 | -    | mA   |      |
|                       | V <sub>DDX</sub> =5 V, V <sub>DD</sub> =12 V<br>V <sub>Out</sub> =V <sub>SS</sub> +0.4V                        | DC IOL at lowest strength for LS                           | _    | 6.45 | -    | mA   |      |
| R <sub>pullup</sub>   | Pullup resistor of HS predriver, gate to source of PFET                                                        |                                                            | 192  | 226  | 260  | kΩ   |      |
| R <sub>pulldown</sub> | Pulldown resistor of LS p<br>of NFET                                                                           | 30                                                         | 40   | 50   | kΩ   |      |      |
| V <sub>clamp1</sub>   | $V_{DD}$ -Vo_clamp in regulation mode with 5.5 V $\leq$ $V_{DD} \leq$ 18 V, loading current is less than 10 mA |                                                            | 4.5  | 5    | 5.5  | V    |      |
| V <sub>clamp2</sub>   | $V_{DD}$ -Vo_clamp in open loop mode with 4.5 V $\leq$ $V_{DD}$ < 5.5 V, loading current is less than 10 mA    |                                                            | 4.0  | -    | 5    | V    |      |
| I <sub>Load</sub>     | The sink current capabilit                                                                                     | ty                                                         | _    | _    | 10   | mA   |      |
|                       | Line regulation, $\Delta V_{clamp}$                                                                            | $4.5 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}^3$ | _    | 1000 | _    | mV/V |      |
|                       | over ΔV <sub>DD</sub>                                                                                          | 5.5 V ≤ V <sub>DD</sub> ≤ 18 V                             | _    | 10   | _    | mV/V |      |
|                       | Load regulation, $\Delta V_{clamp}$                                                                            | $4.5 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}^3$ | _    | 25   | _    | Ω    |      |
|                       | over ∆l <sub>Load</sub>                                                                                        | 5.5 V ≤ V <sub>DD</sub> ≤ 18 V                             | _    | 1    | _    | Ω    |      |
| OVP_22V_<br>a         | 22V over-voltage assertii                                                                                      | ng threshold                                               | 21   | 22   | 23   | V    |      |
| OVP_22V_<br>d         | 22V over-voltage de-ass                                                                                        | erting threshold                                           | 19   | 20   | 21   | V    |      |
| OVP_22V_<br>h         | 22V over-voltage hystere                                                                                       | sis                                                        | 1.9  | 2    | 2.1  | V    |      |
| OVP_24V_<br>a         | 24V over-voltage assertin                                                                                      | ng threshold                                               | 23   | 24   | 25   | V    |      |
| OVP_24V_<br>d         | 24V over-voltage de-ass                                                                                        | erting threshold                                           | 22   | 23   | 24   | V    |      |
| OVP_24V_<br>h         | 24V over-voltage hystere                                                                                       | esis                                                       | 0.9  | 1    | 1.1  | V    |      |

| Table 14. | GDU electrical specifications (continued) |
|-----------|-------------------------------------------|
|-----------|-------------------------------------------|

1. Customer need to add external resistor Rext1 for voltage divider. For example ,if Rext1=85 k $\Omega$  ,1/6 voltage divider; if Rext1=105 k $\Omega$  ,1/7 voltage divider.

 PGA gain is default to 20X. User can cascade one external series resistor (Rext2) to reduce the PGA gain. To keep the current sensor PGA output without saturation distortion, the selected Rext2 must meet PGA output=V<sub>REF</sub>+(R1/ (R2+R<sub>ext2</sub>))xV<sub>shunt</sub>, V<sub>REF</sub>=0.5xV<sub>DDX</sub>, see reference manual for the R1 and R2.

3. This 5.5 V is a rough value, each part might has different value but around 5.5 V.

| Symbol             | Description                                                                | Min.                   | Тур. | Max.                | Unit |
|--------------------|----------------------------------------------------------------------------|------------------------|------|---------------------|------|
| V <sub>DDX</sub>   | Supply voltage                                                             | 4.20                   | 5.0  | 5.25                | V    |
| I <sub>DDHS</sub>  | Supply current, high-speed mode (EN=1, PMODE=1)                            | _                      | 100  | —                   | μA   |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN=1, PMODE=0)                             | —                      | 18   | 20                  | μA   |
| V <sub>AIN</sub>   | Analog input voltage                                                       | 0                      | _    | V <sub>DDX</sub> -1 | V    |
| V <sub>AIO</sub>   | Analog input offset voltage                                                | _                      | _    | 40                  | mV   |
| V <sub>H</sub>     | Analog comparator hysteresis                                               |                        |      |                     |      |
|                    | • CR0[HYSTCTR] = 0                                                         | _                      | 15   | 20                  | mV   |
|                    | • CR0[HYSTCTR] = 1                                                         | —                      | 20   | 30                  | mV   |
| V <sub>CMPOh</sub> | Output high                                                                | V <sub>DDX</sub> – 0.5 |      | —                   | V    |
| V <sub>CMPOI</sub> | Output low                                                                 | _                      |      | 0.5                 | V    |
| I <sub>ALKG</sub>  | Analog input leakage current                                               | _                      | _    | 20                  | nA   |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN=1,<br>PMODE=1), 200mV delta voltage | _                      | 70   | 120                 | ns   |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN=1,<br>PMODE=0), 200mV delta voltage  | —                      | 400  | 600                 | ns   |
|                    | Analog comparator initialization delay <sup>1</sup>                        | _                      | _    | 40                  | μs   |

 Table 15. GDU phase detector ACMP electrical specifications

1. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

### Table 16. GDU over current protect ACMP electrical specifications

| Symbol             | Description                                                                            | Min.                   | Тур. | Max.             | Unit             |
|--------------------|----------------------------------------------------------------------------------------|------------------------|------|------------------|------------------|
| V <sub>DDX</sub>   | Supply voltage                                                                         | 4.20                   | 5.0  | 5.25             | V                |
| IDDHS              | Supply current, high-speed mode (EN=1, PMODE=1)                                        | —                      | 100  | _                | μA               |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN=1, PMODE=0)                                         | —                      | 18   | 20               | μA               |
| V <sub>AIN</sub>   | Analog input voltage                                                                   | $V_{SS} - 0.3$         |      | V <sub>DDX</sub> | V                |
| V <sub>AIO</sub>   | Analog input offset voltage                                                            | —                      | 20   | 40               | mV               |
| V <sub>H</sub>     | Analog comparator hysteresis                                                           |                        |      |                  |                  |
|                    | • CR0[HYSTCTR] = 0                                                                     | _                      | 15   | 20               | mV               |
|                    | • CR0[HYSTCTR] = 1                                                                     | _                      | 20   | 30               | mV               |
| V <sub>CMPOh</sub> | Output high                                                                            | V <sub>DDX</sub> – 0.5 | _    | _                | V                |
| V <sub>CMPOI</sub> | Output low                                                                             | —                      | _    | 0.5              | V                |
| I <sub>ALKG</sub>  | Analog input leakage current                                                           | _                      | _    | 20               | nA               |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN=1,<br>PMODE=1), 200mV delta voltage             | —                      | 70   | 120              | ns               |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN=1,<br>PMODE=0), 200mV delta voltage <sup>1</sup> | —                      | 400  | 600              | ns               |
|                    | Analog comparator initialization delay <sup>2</sup>                                    | —                      | _    | 40               | μs               |
| INL                | 6-bit DAC integral non-linearity                                                       | -0.5                   |      | 0.5              | LSB <sup>3</sup> |

Table 16. GDU over current protect ACMP electrical specifications (continued)

| Symbol | Description                          | Min. | Тур. | Max. | Unit |
|--------|--------------------------------------|------|------|------|------|
| DNL    | 6-bit DAC differential non-linearity | -0.3 | _    | 0.3  | LSB  |

1. This ACMP is used for over-current protection, customer can use low power mode to avoid sparkles. Digital filter can produce max of 12.8 µs filter window.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3.  $1 \text{ LSB} = V_{\text{reference}}/64$ 

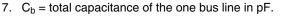
### 3.4 Communication interfaces

### 3.4.1 Inter-Integrated Circuit Interface (I2C) timing Table 17. I2C timing

| Characteristic                                                                                     | Symbol                | Standard Mode    |                   | Fast                               | Mode             | Unit |
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|-------------------|------------------------------------|------------------|------|
|                                                                                                    |                       | Minimum          | Maximum           | Minimum                            | Maximum          |      |
| SCL Clock Frequency                                                                                | f <sub>SCL</sub>      | 0                | 100               | 0                                  | 400 <sup>1</sup> | kHz  |
| Hold time (repeated) START condition.<br>After this period, the first clock pulse is<br>generated. | t <sub>HD</sub> ; STA | 4                | _                 | 0.6                                | _                | μs   |
| LOW period of the SCL clock                                                                        | t <sub>LOW</sub>      | 4.7              | _                 | 1.3                                | —                | μs   |
| HIGH period of the SCL clock                                                                       | t <sub>HIGH</sub>     | 4                | _                 | 0.6                                | —                | μs   |
| Set-up time for a repeated START condition                                                         | t <sub>SU</sub> ; STA | 4.7              | —                 | 0.6                                | —                | μs   |
| Data hold time for I <sup>2</sup> C bus devices                                                    | t <sub>HD</sub> ; DAT | 0 <sup>2</sup>   | 3.45 <sup>3</sup> | 04                                 | 0.9 <sup>2</sup> | μs   |
| Data set-up time                                                                                   | t <sub>SU</sub> ; DAT | 250 <sup>5</sup> | _                 | 100 <sup>3, 6</sup>                | —                | ns   |
| Rise time of SDA and SCL signals                                                                   | t <sub>r</sub>        | —                | 1000              | 20 +0.1C <sub>b</sub> <sup>7</sup> | 300              | ns   |
| Fall time of SDA and SCL signals                                                                   | t <sub>f</sub>        | _                | 300               | 20 +0.1C <sub>b</sub> <sup>6</sup> | 300              | ns   |
| Set-up time for STOP condition                                                                     | t <sub>SU</sub> ; STO | 4                | _                 | 0.6                                | _                | μs   |
| Bus free time between STOP and<br>START condition                                                  | t <sub>BUF</sub>      | 4.7              | —                 | 1.3                                | —                | μs   |
| Pulse width of spikes that must be<br>suppressed by the input filter                               | t <sub>SP</sub>       | N/A              | N/A               | 0                                  | 50               | ns   |

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see DC characteristics) or when using the Normal drive pins and V<sub>DDX</sub> ≥ 2.7 V

The master mode I<sup>2</sup>C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and
SCL lines.


3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

4. Input signal Slew = 10 ns and Output Load = 50 pF

5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.

#### Dimensions

A Fast mode I<sup>2</sup>C bus device can be used in a Standard mode I2C bus system, but the requirement t<sub>SU; DAT</sub> ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t<sub>rmax</sub> + t<sub>SU; DAT</sub> = 1000 + 250 = 1250 ns (according to the Standard mode I<sup>2</sup>C bus specification) before the SCL line is released.



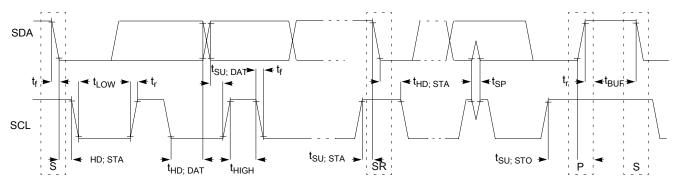



Figure 16. Timing definition for fast and standard mode devices on the I<sup>2</sup>C bus

## 4 Dimensions

### 4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 24-pin QFN                               | 98ASA00602D                   |

# 5 Pinout

### 5.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

| 24 QFN | Pin Name | Default/ALT0 | ALT1 | ALT2 | ALT3 |
|--------|----------|--------------|------|------|------|
| 1      | PTB5     | PWM_WL       |      |      | PTB5 |

| 24 QFN | Pin Name             | Default/ALT0                     | ALT1       | ALT2    | ALT3          |
|--------|----------------------|----------------------------------|------------|---------|---------------|
| 2      | PWM_UH               | PWM_UH                           |            |         |               |
| 3      | PWM_VH               | PWM_VH                           |            |         |               |
| 4      | PWM_WH               | PWM_WH                           |            |         |               |
| 5      | VCLAMP               | VCLAMP                           |            |         |               |
| 6      | VDD                  | VDD                              |            |         |               |
| 7      | VDDX                 | VDDX                             |            |         |               |
| 8      | VSS                  | VSS                              |            |         |               |
| 9      | PTB6/<br>RESET_b     | RESET_b                          |            | TCLK    | PTB6          |
| 10     | PTC0                 | CMP_REF/<br>VREFH                | PWM_FAULT0 | CLK_IN  | PTC0          |
| 11     | PTB7/<br>BKGD/<br>MS | BKGD/<br>MS                      |            | CLKOUT  | PTB7          |
| 12     | PTA7                 | PWT1                             | ТХ         | XB_OUT1 | PTA7/<br>KBI7 |
| 13     | PTA6                 | PWT0                             | RX         | XB_IN1  | PTA6/<br>KBI6 |
| 14     | PTA5                 | TX                               | SDA        | XB_OUT0 | PTA5/<br>KBI5 |
| 15     | PTA4                 | RX                               | SCL        | XB_IN0  | PTA4/<br>KBI4 |
| 16     | PTA3                 | AMP1_M/<br>ADC1AD1               | CLKOUT     | XB_OUT1 | PTA3/<br>KBI3 |
| 17     | PTA2                 | AMP1_P/<br>CMP2/<br>ADC1AD0      | XB_IN1     | XB_OUT0 | PTA2/<br>KBI2 |
| 18     | PTA1                 | AMP0_M/<br>CMP1/<br>ADC0AD1      | XB_OUT0    | XB_IN1  | PTA1/<br>KBI1 |
| 19     | PTA0                 | AMP0_P/<br>CMP0/<br>ADC0AD0      | CLK_IN     | XB_IN0  | PTA0/<br>KBIO |
| 20     | PTB0                 | GDU_CMP0/<br>ADC0AD2/<br>ADC1AD2 |            |         | PTB0          |
| 21     | PTB1                 | GDU_CMP1/<br>ADC0AD3/<br>ADC1AD3 |            |         | PTB1          |
| 22     | PTB2                 | GDU_CMP2/<br>ADC0AD4/<br>ADC1AD4 |            |         | PTB2          |
| 23     | PTB3                 | PWM_UL                           |            |         | PTB3          |
| 24     | PTB4                 | PWM_VL                           |            |         | PTB4          |

## 5.2 Pinout

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see Signal multiplexing and pin assignments.

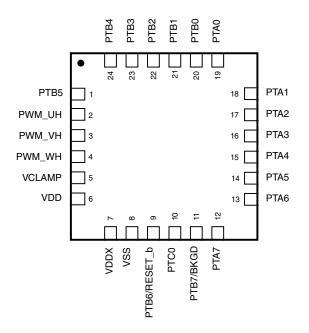



Figure 17. 24-pin QFN pinout diagram

# 6 Part identification

## 6.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

### 7.1.1 Example

This is an example of an operating requirement:

| Symbol          | Description               | Min. | Max. | Unit |
|-----------------|---------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply voltage | 0.9  | 1.1  | V    |

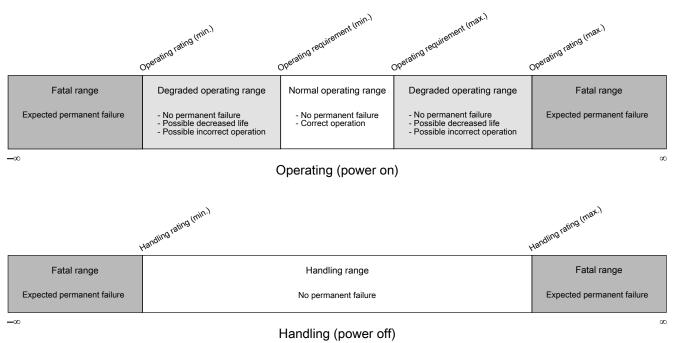
### 7.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

### 7.2.1 Example

This is an example of an operating behavior:

| Symbol          | Description                                  | Min. | Max. | Unit |
|-----------------|----------------------------------------------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak pullup/<br>pulldown current | 10   | 130  | μΑ   |


## 7.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

### 7.3.1 Example

This is an example of an attribute:

| Symbol | Description                        | Min. | Max. | Unit |
|--------|------------------------------------|------|------|------|
| CIN_D  | Input capacitance:<br>digital pins | —    | 7    | pF   |



# 7.6 Relationship between ratings and operating requirements

# 7.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

# 7.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

| Symbol          | Description          | Value | Unit |
|-----------------|----------------------|-------|------|
| T <sub>A</sub>  | Ambient temperature  | 25    | C°   |
| V <sub>DD</sub> | 3.3 V supply voltage | 3.3   | V    |

| Table 18. | Typical  | value conditions |  |
|-----------|----------|------------------|--|
|           | . yproui |                  |  |

### 7.10 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 19. Parameter Classifications

| Р | Those parameters are guaranteed during production testing on each individual device.                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С | Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.                                                                              |
| Т | Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. |
| D | Those parameters are derived mainly from simulations.                                                                                                                                                                  |

### NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

# 8 Revision history

The following table provides a revision history for this document.

| Rev. No. | Date    | Substantial Changes      |
|----------|---------|--------------------------|
| 1        | 09/2016 | Initial public release.  |
| 2        | 11/2016 | Added MC9S08SU8VFK part. |