E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SCI
Peripherals	PWM, WDT
Number of I/O	17
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 18V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-UFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08su8vfk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Ratin	gs		5
	1.1	Therm	al handling ratings	5
	1.2	Moistu	re handling ratings	5
	1.3	ESD h	andling ratings	5
	1.4	Voltag	e and current operating ratings	6
2	Gene	ral		7
	2.1	Nonsw	vitching electrical specifications	7
		2.1.1	DC characteristics	7
		2.1.2	Supply current characteristics	12
		2.1.3	EMC performance	14
	2.2	Switch	ing specifications	15
		2.2.1	Control timing	15
		2.2.2	FTM module timing	16
	2.3	Therm	al specifications	17
		2.3.1	Thermal operating requirements	17
		2.3.2	Thermal characteristics	18
3	Perip	heral o	perating requirements and behaviors	18
	3.1	ICS ch	aracteristics	18
	3.2	NVM s	pecifications	19
	3.3	Analog]	20
		3.3.1	ADC characteristics	20
		3.3.2	CMP and 6-bit DAC electrical specifications	23
		3.3.3	GDU characteristics	26
	3.4	Comm	unication interfaces	29

		3.4.1 Inter-Integrated Circuit Interface (I2C) timing2	9
4	Dime	nsions	0
	4.1	Obtaining package dimensions 3	0
5	Pinou	ıt3	0
	5.1	Signal multiplexing and pin assignments3	0
	5.2	Pinout	2
6	Part i	dentification3	2
	6.1	Description	2
	6.2	Format3	3
	6.3	Fields	3
	6.4	Example	3
7	Term	inology and guidelines3	3
	7.1	Definition: Operating requirement3	3
	7.2	Definition: Operating behavior3	4
	7.3	Definition: Attribute	4
	7.4	Definition: Rating	5
	7.5	Result of exceeding a rating	5
	7.6	Relationship between ratings and operating	
		requirements3	6
	7.7	Guidelines for ratings and operating requirements3	6
	7.8	Definition: Typical value	6
	7.9	Typical value conditions	7
	7.10	Parameter Classification	8
8	Revis	ion history3	8

1.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DDX}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	4.5	18	V
V _{DDX}	Supply voltage to digital I/O drivers ¹	4.20	5.25	V
I _{DDX}	Maximum current into V _{DDX}	—	50	mA
V _{DIO}	Digital input voltage (except RESET or true open drain pin PTA4 and PTA5)	-0.3	V _{DDX} +0.3	V
	Digital input voltage (true open drain pin PTA4 and PTA5)	-0.3	V _{DDX} +0.3	V
V _{AIO}	Analog ² , RESET input voltage	-0.3	V _{DDX} +0.3	V
Ι _D	I _D Instantaneous maximum current single pin limit (applies to all port pins)		25	mA

1. See Table 2 for detail.

2. All digital I/O pins, except open-drain pin PTA4 and PTA5, are internally clamped to V_{SS} and V_{DDX} . PTA4 and PTA5 is only clamped to V_{SS} .

Symbol	Description		Min.	Typical	Max.	Unit
V _{LVWA}	V _{DDX} Low voltage	PMC_LVCTLSTAT1[SLVWSEL] = 1b		3.63	3.83	V
	warning assert level	PMC_LVCTLSTAT1[SLVWSEL] = 0b	3.94	4.14	4.34	
V _{LVWD}	V _{DDX} Low voltage	PMC_LVCTLSTAT1[SLVWSEL] = 1b	3.54	3.74	3.94	V
	warning deassert level	PMC_LVCTLSTAT1[SLVWSEL] = 0b	4.08	4.28	4.48	
V _{LVRA}	V _{DDX} low voltage rese	et assert	2.97	3.02	_	V
V _{LVRD}	V _{DDX} low voltage rese	et deassertl	_	—	3.13	V
V _{LVWREFHA}	Low voltage warning	PMC_VREFHLVW[LVWCFG]=00b	3.34	3.54	3.74	V
	for V _{REFH} assert	PMC_VREFHLVW[LVWCFG]=01b	3.43	3.63	3.83	V
		PMC_VREFHLVW[LVWCFG]=10b	3.86	4.06	4.26	V
		PMC_VREFHLVW[LVWCFG]=11b	4.11	4.31	4.51	V
V _{LVWREFHA}	Low voltage warning for V _{REFH} deassert level ⁴	PMC_VREFHLVW[LVWCFG]=00b	3.45	3.65	3.85	V
		PMC_VREFHLVW[LVWCFG]=01b	3.55	3.75	3.95	V
		PMC_VREFHLVW[LVWCFG]=10b	4.00	4.20	4.40	V
		PMC_VREFHLVW[LVWCFG]=11b	4.27	4.47	4.67	V
f _{LPOCLK}	Trimmed LPOCLK ou	tput frequency	—	20		kHz
df _{LPOCLK}	Trimmed LPOCLK int	ernal clock $\Delta f / f_{NOMINAL}^5$	-5	—	5	%
t _{SDEL}	LPOCLK start up dela	iy	_	25	50	μs
dV _{HT}	Temperature sensor s	slope	—	5.07	_	mV/° C
V _{HT}	Temperature sensor of	putput voltage	_	1.73		V
T _{HTIA}	High temperature inte	rrupt assert ⁶	110	130	150	°C
T _{HTID}	High temperature inte	rrupt deassert ⁶	100	120	140	°C
V _{BG}	Bandgap output voltage			1.2	1.32	V
V _{HCBG}	HC Bandgap output v	oltage	1.14	1.15	1.16	V
t _{STP_REC}	Recovery time from	not including V _{REFH}	_	15		μs
	Stop	including V _{REFH}	_	1	_	ms

1. Typical values are measured at 25 °C.

- 2. Power supply enters reduced power mode when MCU is in Stop mode.
- 3. This typical value is configurable based on V_{REC} .
- 4. PMC_VREFHLVW[LVWCFG]=01b is recommended for the configuration.

5. User need to trim the LPOCLK in order to get ±5% LPOCLK

6. This is junction temperature.

Figure 2 illustrates the power distribution of this chip.

I_{OL}(mA)

Figure 6. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DDX} = 5 V$)

2.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
С	Run supply current, FEI	RI _{DD}	40/20 MHz	18	11.00	—	mA	-40 to 105 °C
С	mode, all clock gate is off,		20/10 MHz		7.50	—		
			20/1 MHz		6.00	_		
С			20/20 MHz	12	9.15	_		
С			20/10 MHz		7.50	_		
			20/1 MHz		5.95	_		
			20/20 MHz	5.3	9.10	_		
			20/10 MHz		7.45	—		
			20/1 MHz		5.90	_		
			20/20 MHz	4.5	9.35	_		
			20/10 MHz		7.65	_		
			20/1 MHz		6.15	—		

 Table 3.
 Supply current characteristics

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Мах	Unit	Temp
С	Run supply current, FEI	RI _{DD}	40/20 MHz	18	13.05	—	mA	-40 to 105 °C
С	mode, all clock gate is on,		20/10 MHz		8.45	—		
			20/1 MHz		6.05	—		
С			20/20 MHz	12	11.00	_		
С			20/10 MHz		8.40	—		
			20/1 MHz		6.00			
			20/20 MHz	5.3	10.95	—		
			20/10 MHz		8.35	—		
			20/1 MHz		6.00			
			20/20 MHz	4.5	11.20	—		
			20/10 MHz		8.60			
			20/1 MHz		6.20			
С	Run supply current, FBE	RI _{DD}	40/20 MHz	18	9.60	—	mA	-40 to 105 °C
С	mode, all clock gate is off, code run from SBAM		20/10 MHz		6.05			
			20/1 MHz		4.50			
С			20/20 MHz	12	7.80	_		
С			20/10 MHz		6.05			
			20/1 MHz		4.45			
			20/20 MHz	5.3	7.75	—		
			20/10 MHz		6.00			
			20/1 MHz		4.40			
			20/20 MHz	4.5	7.90	—		
			20/10 MHz		6.20	—		
			20/1 MHz		4.60	—		
С	Run supply current, FBE	RI _{DD}	40/20 MHz	18	11.65	_	mA	-40 to 105 °C
С	code run from SBAM		20/10 MHz		7.00	—		
			20/1 MHz		4.60	_		
С			20/20 MHz	12	9.60	_		
С			20/10 MHz		6.95	—		
			20/1 MHz		4.55	_		
			20/20 MHz	5.3	9.60	_		
			20/10 MHz		6.90			
			20/1 MHz		4.50	—		
			20/20 MHz	4.5	9.75			
			20/10 MHz		7.10	—		
			20/1 MHz		4.70			
С	Wait mode current, FEI mode, all clock gate is on	WI _{DD}	40/20 MHz	18	7.80	_	mA	-40 to 105 °C

Table 3.	Supply current	characteristics	(continued)
----------	----------------	-----------------	-------------

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
С			20/10 MHz		6.05	_		
			20/1 MHz		4.40	_		
С			20/20 MHz	12	7.70	_		
			20/10 MHz		6.00	_		
			20/1 MHz		4.40	_		
			20/20 MHz	5.3	7.65	—		
			20/10 MHz		5.95	_		
			20/1 MHz		4.35	_		
			20/20 MHz	4.5	7.85	—		
			20/10 MHz		6.20	_		
			20/1 MHz		4.60	_		
С	Stop mode supply current,	SI _{DD}	_	18	19.85		μA	-40 to 105 °C
С	no clocks active (except 20 kHz LPO clock)			12	19.05			
С				5.3	18.25			
С				4.5	17.65	_		
С	ADC adder to Stop	_	_	18	88.80	_	μA	-40 to 105 °C
С	ADLPC = 1			12	87.95			
С	ADLSMP = 1			5.3	86.70	_		
С	ADCO = 1			4.5	85.40			

Table 3.	Supply current	characteristics	(continued)
----------	----------------	-----------------	-------------

1. Data in Typical column was characterized at 25 °C or is typical recommended value.

2.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.1.3.1 EMC radiated emissions operating behaviors

NOTE

If using external reset switch to design hardware board, connect two 0.1 μ F decoupling capacitors on RESET pin for

С	Rating		Symbol	Min	Typical ¹	Max	Unit
С	Port rise and fall time -	—	t _{Rise}	—	10.2	—	ns
С	Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF) ⁵		t _{Fall}	_	9.5	_	ns
С	Port rise and fall time -		t _{Rise}	—	5.4	—	ns
С	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) ⁵		t _{Fall}	—	4.6	—	ns

 Table 5.
 Control timing (continued)

- 1. Typical values are based on characterization data at V_{DDX} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DDX} rises above V_{LVD} .
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DDX} and 80% V_{DDX} levels. Temperature range -40 °C to 105 °C.

Figure 8. IRQ/KBIPx timing

2.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}

Table 6. FTM input timing

2.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DDX} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DDX} will be very small.

Board type	Symbol	Description	24-pin QFN	Unit	Notes
Single-layer (1S)	$R_{ heta JA}$	Thermal resistance, junction to ambient (natural convection)	114	°C/W	1, 2
Four-layer (2s2p)	$R_{ heta JA}$	Thermal resistance, junction to ambient (natural convection)	42	°C/W	1, 3
Single-layer (1S)	$R_{ extsf{ heta}JMA}$	Thermal resistance, junction to ambient (200 ft./min. air speed)	96	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	36	°C/W	1, 3
_	$R_{\theta JB}$	Thermal resistance, junction to board	19	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	3.4	°C/W	5
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	15	°C/W	6

Table 8. Thermal attributes	Table 8	8. '	Thermal	attributes
-----------------------------	---------	------	---------	------------

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

3 Peripheral operating requirements and behaviors

3.1 ICS characteristics

С	0	Characteristic	Symbol	Min	Typical ¹	Max	Unit
Т	Internal r	eference start-up time	t _{IRST}	—	20	50	μs
D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125	—	5	MHz
D	input clock frequency	FBELP mode		0	—	40	MHz
Р	Average inte	rnal reference frequency - trimmed	f _{int_t}	—	39.0625		kHz
Р	DCO output f	requency range - trimmed	f _{dco_t}	16	—	40	MHz
Р	Total deviation of DCO output	Over full voltage and temperature range	Δf_{dco_t}	—		±2.0	%f _{dco}
С	from trimmed frequency ³	Over fixed voltage and temperature range of 0 to 70 °C				±1.0	
С	FLL a	acquisition time ^{3, 4}	t _{Acquire}	_	—	2	ms
С	Long term jitter o ove	f DCO output clock (averaged r 2 ms interval) ⁵	C _{Jitter}		0.02	0.2	%f _{dco}

Table 9. ICS specifications (temperature range = -40 to 105 °C ambient)

1. Data in Typical column was characterized at V_{DDX} = 5.0 V, 25 °C or is typical recommended value.

- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. This parameter is characterized and not tested on each device.
- 4. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 5. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DDX} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

3.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	—	20	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}			2605	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}			2579	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}		—	485	t _{cyc}
D	Read Once	t _{RDONCE}			464	t _{cyc}

Table 10. Flash characteristics

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Analog source	12-bit mode $f_{ADCK} > 4 \text{ MHz}$	R _{AS}	_	_	2	kΩ	External to MCU
resistance		-			5		
	• $f_{ADCK} > 4 \text{ MHz}$		_	—	5		
	• f _{ADCK} < 4 MHz		—	—	10		
	8-bit mode		_	—	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	—	8.0	MHz	—
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

 Table 11. 5 V 12-bit ADC operating conditions (continued)

 Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

Figure 11. ADC input impedance equivalency diagram

Table 12. 12-bit ADC Characteristics (V	$V_{\text{REFH}} = V_{\text{DDA}}, V_{\text{REFL}} = V_{\text{SSA}}$
---	--

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	—	133	—	μΑ
ADLPC = 1							
ADLSMP = 1							

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	—	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	—	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}		582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μA
ADC asynchronous clock source	High speed (ADLPC = 0)	Т	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	—	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	_	±5.5	—	LSB ⁴
Error ^{2, 3}	10-bit mode	Т		_	±1.7	±2.0	
	8-bit mode	Т		—	±0.9	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	1.4	—	LSB ⁴
Linearity ³	10-bit mode ⁵	Р		—	0.5	—	
	8-bit mode ⁵	Т		—	0.15	—	
Integral Non-	12-bit mode	Т	INL		1.4		LSB ⁴
Linearity	10-bit mode	Т		_	0.5		
	8-bit mode	Т		_	0.15		
Zero-scale error ⁶	12-bit mode	С	E _{ZS}		±2.0		LSB ⁴
	10-bit mode	Т			±0.25	±1.0	
	8-bit mode	Т			±0.65	±1.0	
Full-scale error ⁷	12-bit mode	Т	E _{FS}	_	±2.5		LSB ⁴

Table 12.	12-bit ADC Characteristics	$(V_{\text{REFH}} = V_{\text{DDA}})$	$V_{REFL} = V_{SSA}$	(continued)
-----------	----------------------------	--------------------------------------	----------------------	-------------

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	10-bit mode	Т		—	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ	—	—	±0.5	LSB ⁴
Input leakage error ⁸	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	—	3.266	—	mV/°C
	25°C– 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.36	_	V

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume $V_{DDX} = 5.0 \text{ V}$, $V_{DD} \ge 5.3 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.

 To get better ADC performance: For the application case of V_{DD}<5.3 V, suggest to select V_{REFH} as ADC reference. For the application case VDD≥5.3 V, suggest to select V_{DDX} as ADC reference.

- 4. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^N$
- 5. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 6. $V_{ADIN} = V_{SSA}$
- 7. $V_{ADIN} = V_{DDA}$
- 8. I_{In} = leakage current (refer to DC characteristics)

3.3.2 CMP and 6-bit DAC electrical specifications Table 13. Comparator and 6-bit DAC electrical specifications

Symbol	Description		Min.	Тур.	Max.	Unit
V _{DDX}	Supply voltage		4.20	5.0	5.25	V
I _{DDHS}	Supply current, high-spee PMODE=1)	d mode (EN=1,	—	100	_	μΑ
I _{DDLS}	Supply current, low-speed	I mode (EN=1, PMODE=0)	—	18	20	μA
V _{AIN}	Analog input voltage		V _{SS} – 0.3	_	V _{DDX}	V
V _{AIO}	Analog input offset voltage	e	—		40	mV
V _H	Analog comparator	CR0[HYSTCTR] = 0	—	15	20	mV
hysteresis	CR0[HYSTCTR] = 1	—	20	30	mV	
V _{CMPOh}	Output high	1	V _{DDX} – 0.5	_		V
V _{CMPOI}	Output low		—		0.5	V
I _{ALKG}	Analog input leakage curr	ent	—		20	nA
t _{DHS}	Propagation delay, high-	200 mV delta voltage		70	120	ns
	speed mode (EN=1,	100 mV delta voltage	—	100	150	ns
		50 mV delta voltage	—	200	250	ns
t _{DLS}	Propagation delay, low-	200 mV delta voltage	—	400	600	ns
	speed mode (EN=1, PMODE=0)	100 mV delta voltage	—	600	800	ns

Symbol	Description		Min.	Тур.	Max.	Unit
	50 mV delta voltage		—	1000	1500	ns
	Analog comparator initialization delay ¹		—	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)		—	7	_	μA
INL	6-bit DAC integral non-linearity		-0.5	_	0.5	LSB ²
DNL	6-bit DAC differential non-linearity		-0.3	—	0.3	LSB

 Table 13. Comparator and 6-bit DAC electrical specifications (continued)

1. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

2. 1 LSB = $V_{reference}/64$

Figure 13. Typical hysteresis vs. Vin level ($V_{DDX} = 5.0 \text{ V}$, PMODE = 1)

Figure 14. Typical propagation delay vs. Vin level ($V_{DDX} = 5.0 V$, high speed mode))

Symbol	Description		Min.	Тур.	Max.	Unit	Note
		I _{Load} =15 mA	—	317	590	mV	
		I _{Load} =20 mA	—	330	600	mV	
	DC VOL for LS, V _{DDX} =5	I _{Load} =5 mA	—	290	570	mV	
	V, V _{DD} =12 V	I _{Load} =15 mA	—	320	580	mV	
		I _{Load} =20 mA	—	335	600	mV	
I _{ОН}	V_{DDX} =5 V, V_{DD} =12 V, V_{Out} = V_{DD} -0.4V	DC IOH at lowest strength for HS	_	7.45	_	mA	
	V_{DDX} =5 V, V_{DD} =12 V, V_{Out} = V_{DDX} -0.4V	DC IOH at lowest strength for LS	—	7.45		mA	
I _{OL}	V _{DDX} =5 V, V _{DD} =12 V V _{Out} =V _{clamp} +0.4V	DC IOL at lowest strength for HS	_	6.45	_	mA	
	V _{DDX} =5 V, V _{DD} =12 V V _{Out} =V _{SS} +0.4V	DC IOL at lowest strength for LS	_	6.45	_	mA	
R _{pullup}	Pullup resistor of HS pred PFET	192	226	260	kΩ		
R _{pulldown}	Pulldown resistor of LS p of NFET	redriver, gate to source	30	40	50	kΩ	
V _{clamp1}	V_{DD} -Vo_clamp in regulat $V_{DD} \le 18 \text{ V}$, loading curre	ion mode with 5.5 V \leq ent is less than 10 mA	4.5	5	5.5	V	
V _{clamp2}	V _{DD} -Vo_clamp in open lo V _{DD} < 5.5 V, loading curr	op mode with 4.5 V \leq ent is less than 10 mA	4.0	-	5	V	
I _{Load}	The sink current capabilit	iy	_	—	10	mA	
	Line regulation, ΔV_{clamp}	$4.5 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}^3$	_	1000	—	mV/V	
	over ΔV _{DD}	$5.5 \text{ V} \le \text{V}_{\text{DD}} \le 18 \text{ V}$	—	10	—	mV/V	
	Load regulation, ΔV_{clamp}	$4.5 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}^3$	_	25	—	Ω	
	over ΔI _{Load}	$5.5 \text{ V} \le \text{V}_{\text{DD}} \le 18 \text{ V}$	—	1	—	Ω	
OVP_22V_ a	22V over-voltage asserting threshold		21	22	23	V	
OVP_22V_ d	22V over-voltage de-asserting threshold		19	20	21	V	
OVP_22V_ h	22V over-voltage hysteresis		1.9	2	2.1	V	
OVP_24V_ a	24V over-voltage asserting threshold		23	24	25	V	
OVP_24V_ d	24V over-voltage de-asse	erting threshold	22	23	24	V	
OVP_24V_ h	24V over-voltage hystere	sis	0.9	1	1.1	V	

1. Customer need to add external resistor Rext1 for voltage divider. For example ,if Rext1=85 k Ω ,1/6 voltage divider; if Rext1=105 k Ω ,1/7 voltage divider.

 PGA gain is default to 20X. User can cascade one external series resistor (Rext2) to reduce the PGA gain. To keep the current sensor PGA output without saturation distortion, the selected Rext2 must meet PGA output=V_{REF}+(R1/ (R2+R_{ext2}))xV_{shunt}, V_{REF}=0.5xV_{DDX}, see reference manual for the R1 and R2.

3. This 5.5 V is a rough value, each part might has different value but around 5.5 V.

Table 16. GDU over current protect ACMP electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

1. This ACMP is used for over-current protection, customer can use low power mode to avoid sparkles. Digital filter can produce max of 12.8 µs filter window.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. $1 \text{ LSB} = V_{\text{reference}}/64$

3.4 Communication interfaces

3.4.1 Inter-Integrated Circuit Interface (I2C) timing Table 17. I2C timing

Characteristic	Symbol	Standard Mode		Fast Mode		Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	—	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7		1.3	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6		μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ^{3, 6}	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	—	0.6	—	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see DC characteristics) or when using the Normal drive pins and V_{DDX} ≥ 2.7 V

 The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

4. Input signal Slew = 10 ns and Output Load = 50 pF

5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.

24 QFN	Pin Name	Default/ALT0	ALT1	ALT2	ALT3
2	PWM_UH	PWM_UH			
3	PWM_VH	PWM_VH			
4	PWM_WH	PWM_WH			
5	VCLAMP	VCLAMP			
6	VDD	VDD			
7	VDDX	VDDX			
8	VSS	VSS			
9	PTB6/ RESET_b	RESET_b		TCLK	PTB6
10	PTC0	CMP_REF/ VREFH	PWM_FAULT0	CLK_IN	PTC0
11	PTB7/ BKGD/ MS	BKGD/ MS		CLKOUT	PTB7
12	PTA7	PWT1	ТХ	XB_OUT1	PTA7/ KBI7
13	PTA6	PWT0	RX	XB_IN1	PTA6/ KBI6
14	PTA5	ТХ	SDA	XB_OUT0	PTA5/ KBI5
15	PTA4	RX	SCL	XB_IN0	PTA4/ KBI4
16	PTA3	AMP1_M/ ADC1AD1	CLKOUT	XB_OUT1	PTA3/ KBI3
17	PTA2	AMP1_P/ CMP2/ ADC1AD0	XB_IN1	XB_OUT0	PTA2/ KBI2
18	PTA1	AMP0_M/ CMP1/ ADC0AD1	XB_OUT0	XB_IN1	PTA1/ KBI1
19	PTA0	AMP0_P/ CMP0/ ADC0AD0	CLK_IN	XB_IN0	PTA0/ KBI0
20	PTB0	GDU_CMP0/ ADC0AD2/ ADC1AD2			PTB0
21	PTB1	GDU_CMP1/ ADC0AD3/ ADC1AD3			PTB1
22	PTB2	GDU_CMP2/ ADC0AD4/ ADC1AD4			PTB2
23	PTB3	PWM_UL			PTB3
24	PTB4	PWM_VL			PTB4

7.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

7.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

7.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

7.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

7.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

7.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μA

7.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

7.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

Table 18.	Typical	value	conditions

7.10 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 19. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

8 Revision history

The following table provides a revision history for this document.

Table 20.	Revision	history
-----------	----------	---------

Rev. No.	Date	Substantial Changes
1	09/2016	Initial public release.
2	11/2016	Added MC9S08SU8VFK part.