

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp206a-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via Email at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 4-31: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	—	_	_	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxxx(1)
OSCCON	0742	_	(COSC<2:0>	>	_	١	NOSC<2:0	>	CLKLOCK	_	LOCK		CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	[DOZE<2:0>	>	DOZEN	FI	RCDIV<2:0)>	PLLPOS	T<1:0>	—		F	PLLPRE<4:	:0>		3040
PLLFBD	0746		—		—	—	_		PLLDIV<8:0>					0030				
OSCTUN	0748		—		_	—	_	_	TUN<5:0>					0000				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-32: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_	_	—	_	_	ERASE				NVMO	P<3:0>		₀₀₀₀ (1)
NVMKEY	0766	—		—				—					NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-33: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	_	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	-	_	_	—	—	-	—		_	_	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

7.3 Interrupt Control and Status Registers

PIC24HJXXXGPX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VEC-NUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF
bit 7		10011	Different	0.11	O Hour		bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	TEIE. Timore	Interrupt Flag	Status bit				
DIL 15		request has oc					
		request has not					
bit 14	DMA4IF: DM	A Channel 4 D	ata Transfer C	Complete Interr	rupt Flag Status	bit	
		request has occ					
bit 13	•	request has not ited: Read as '					
bit 12	•	ut Compare Ch		unt Elan Statur	e hit		
	•	request has oc		upi i lag Status	5 Dit		
		request has not					
bit 11	OC7IF: Output	ut Compare Ch	annel 7 Interr	upt Flag Status	s bit		
		request has oco request has not					
bit 10	OC6IF: Output	ut Compare Ch	annel 6 Interr	upt Flag Status	s bit		
		request has oco request has not					
bit 9	OC5IF: Output	ut Compare Ch	annel 5 Interr	upt Flag Status	s bit		
		request has oc					
h :+ 0	•	request has not		The Otative hit			
bit 8	-	Capture Channe request has oce		-lag Status bit			
	•	request has not					
bit 7	IC5IF: Input (Capture Channe	el 5 Interrupt I	-lag Status bit			
		request has oc					
	•	request has not					
bit 6		Capture Channe		-lag Status bit			
		request has oco request has not					
bit 5	IC3IF: Input C	Capture Channe	el 3 Interrupt I	-lag Status bit			
		request has oc					
bit 4	-	request has not		amplata Intorr	unt Flog Status	hit	
bit 4		request has oc			rupt Flag Status	UIL	
		request has not					
bit 3	•	I Event Interrup		bit			
		request has oc					
	0 = Interrupt	request has not	occurred				

PIC24HJXXXGPX06A/X08A/X10A

	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_			_	_		
bit 15	-						bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	_
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7 bit 6 bit 5	1 = Interrupt r 0 = Interrupt r C1TXIF: ECA 1 = Interrupt r 0 = Interrupt r DMA7IF: DM	request has occ request has not N1 Transmit D request has occ request has not A Channel 7 Da	curred occurred ata Request I curred occurred	nterrupt Flag S nterrupt Flag S Complete Interru	tatus bit	s bit	
		request has occ request has not					
	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r	request has not	: occurred ata Transfer C curred	Complete Interr	upt Flag Statu	s bit	
bit 4	0 = Interrupt r DMA6IF: DM 1 = Interrupt r 0 = Interrupt r	equest has not A Channel 6 Da equest has occ	coccurred ata Transfer C curred coccurred	Complete Interr	upt Flag Statu	s bit	
	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r 0 = Interrupt r Unimplemen U2EIF: UART 1 = Interrupt r	request has not A Channel 6 Da request has occ request has not	coccurred ata Transfer C curred coccurred o' ot Flag Status curred		upt Flag Statu	s bit	
bit 4 bit 3	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r 0 = Interrupt r Unimplemen U2EIF: UART 1 = Interrupt r 0 = Interrupt r U1EIF: UART 1 = Interrupt r	equest has not A Channel 6 Da equest has occ equest has not ted: Read as '0 2 Error Interrup equest has occ	coccurred ata Transfer C curred coccurred of Flag Status curred coccurred of Flag Status curred	bit	upt Flag Statu	s bit	

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		CNIP<2:0>		—		—	—
bit 15							bit 8
		5444			-		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		MI2C1IP<2:0>		—		SI2C1IP<2:0>	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	כי				
bit 14-12	CNIP<2:0>:	Change Notifica	tion Interrupt	t Priority bits			
	111 = Interru	upt is priority 7 (nighest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
		upt source is dis	abled				
bit 11-7	Unimpleme	nted: Read as '	o'				
bit 6-4	MI2C1IP<2:	0>: I2C1 Master	Events Inter	rupt Priority bits	;		
	111 = Interru	upt is priority 7 (nighest priori	ty interrupt)			
	•						
	•						
	•						
	• 001 = Interru	upt is priority 1					
		upt is priority 1 upt source is dis	abled				
bit 3	000 = Interru						
	000 = Interru Unimpleme	upt source is dis	כ'	pt Priority bits			
	000 = Interru Unimpleme SI2C1IP<2:0	upt source is dis nted: Read as '	o' Events Interru				
	000 = Interru Unimpleme SI2C1IP<2:0	upt source is dis nted: Read as ' I>: I2C1 Slave E	o' Events Interru				
	000 = Interru Unimpleme SI2C1IP<2:0	upt source is dis nted: Read as ' I>: I2C1 Slave E	o' Events Interru				
bit 3 bit 2-0	000 = Intern Unimplemen SI2C1IP<2:0 111 = Intern • • • 001 = Intern	upt source is dis nted: Read as ' I>: I2C1 Slave E	_D ' Events Interru nighest priori				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T6IP<2:0>		—		DMA4IP<2:0>	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—				OC8IP<2:0>	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 1 <i>5</i>	l inima la vere	nted. Deed at f	<u>`</u>				
bit 15	-	nted: Read as '					
bit 14-12		Timer6 Interrupt	•				
	111 = Intern	upt is priority 7 (I	nignest priorit	y interrupt)			
	•						
	•						
		upt is priority 1	ablad				
L:1 11		upt source is dis					
bit 11	-	nted: Read as '					
bit 10-8		D>: DMA Channe		•	e interrupt Prio	ity bits	
	•	upt is priority 7 (I	lignest phone	y interrupt)			
	•						
	•						
		upt is priority 1	ablad				
		upt source is dis					
bit 7-3	-	nted: Read as '					
bit 2-0		: Output Compa		-	ity bits		
	111 = Interru •	upt is priority 7 (I	nignest priorit	y interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis					

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of "dsPIC33F/PIC24H Familv the Reference Manual", which is available site the from Microchip web (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24HJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C Port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please refer to the *"dsPIC33F/PIC24H Family Reference Manual"*.

bit 15 bit 16 bit 15 bit 16 bit 17 bit 10 bi	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 - - - - CH123NA<1:0> CH123SA bit 7 bit bit bit bit bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit bit 15-11 Unimplemented: Read as '0' CH123NB character x = Bit is unknown bit 10-9 CH123NB CH123NB character x = Bit is unknown 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN8, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHXSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 negative input is AN2 Dit 7-3 Unimplemented: Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 positive input is AN9, CH2 negative input is AN1, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN1, CH3 negative input is AN11 <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>CH123N</td> <td>NB<1:0></td> <td>CH123SB</td>	_	_	_	_	_	CH123N	NB<1:0>	CH123SB
	bit 15							bit 8
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' CH123NB CH123NB CH123NB CH123NB CH123NB CH123NB CH123NB bit 10-9 CH123NB CH123NB CH123NB CH1 Regative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input SVREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 2-1 CH123NA CH123NA CH123NA CH2 ch3 negative input is AN1, CH3 positive input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negat	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHXNB is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHXSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' 11 = CH1 negative input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN10, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF		—	—	_	—	CH123N	NA<1:0>	CH123SA
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB CH123NB x = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB CH123NB x = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB<	Legend:							
 bit 15-11 Unimplemented: Read as '0' CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA then AD12B = 1, CHxAA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN7, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN8, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 	R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
 bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input SVREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' DH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 	-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
 bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input SVREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' DH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 								
 When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' 11 = CH1 negative input is AN0, CH2 positive Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 		•						
 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0'	bit 10-9					•	S	
 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN8, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 								
 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 negative input is AN8, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 								
bit 8CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2bit 7-3Unimplemented: Read as '0' CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF-bit 0CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN8, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF-bit 0CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5			•	•		N7, CH5 negati	ive input is Aiv	10
 When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 	bit 8			•		ole B bit		
 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 				•				
 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 							nput is AN5	
bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5		0 = CH1 posi	tive input is AN	0, CH2 positiv	e input is AN1	, CH3 positive i	nput is AN2	
 When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 	bit 7-3	Unimplemen	ted: Read as '	0'				
 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 	bit 2-1	CH123NA<1:	:0>: Channel 1	, 2, 3 Negative	e Input Select fo	or Sample A bit	s	
10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5								
0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5								
bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5						N7, CH3 negati	ive input is AN	18
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5	hit O		-	-		ala A hit		
1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5	DILU							
							nout is AN5	

REGISTER 20-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	-0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	15 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - **2:** Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
 - Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

PIC24HJXXXGPX06A/X08A/X10A

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		(unless oth	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units		Conditions						
Operating Cur	rent (IDD) ⁽¹⁾										
DC20d	27	30	mA	-40°C							
DC20a	27	30	mA	+25°C	- 3.3V	10 MIPS					
DC20b	27	30	mA	+85°C	3.3V						
DC20c	27	35	mA	+125°C							
DC21d	36	40	mA	-40°C							
DC21a	37	40	mA	+25°C	3.3V	16 MIPS					
DC21b	38	45	mA	+85°C	3.3V	TO IVITES					
DC21c	39	45	mA	+125°C							
DC22d	43	50	mA	-40°C							
DC22a	46	50	mA	+25°C	2.21/						
DC22b	46	55	mA	+85°C	- 3.3V	20 MIPS					
DC22c	47	55	mA	+125°C							
DC23d	65	70	mA	-40°C							
DC23a	65	70	mA	+25°C	3.3V	30 MIPS					
DC23b	65	70	mA	+85°C	3.3V	30 MIPS					
DC23c	65	70	mA	+125°C							
DC24d	84	90	mA	-40°C							
DC24a	84	90	mA	+25°C	2.21/						
DC24b	84	90	mA	+85°C	- 3.3V	40 MIPS					
DC24c	84	90	mA	+125°C							

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- 2: These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

PIC24HJXXXGPX06A/X08A/X10A

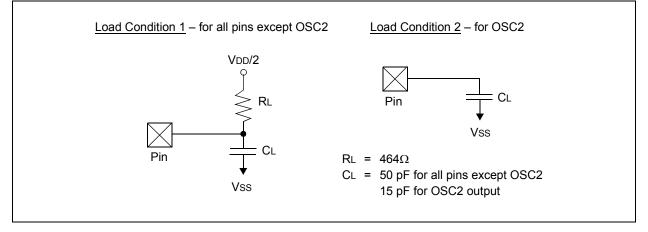
DC CHA	RACTER	ISTICS		otherwi	se stated) 40°C ≤ [·]	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 VDD	V	
DI15		MCLR	Vss	—	0.2 VDD	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V	
DI18		I/O Pins with I ² C	Vss	_	0.3 Vdd	V	SMBus disabled
DI19		I/O Pins with I ² C	Vss	—	0.8 V	V	SMBus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V	
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMBus disabled
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	_	—	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±1	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance, -40°C \le TA \le +85°C
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	_	±2	μA	Shared with external reference pins, -40°C \leq TA \leq +85°C
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	—	_	±2	μA	$Vss \le Vpin \le Vdd$
DI56		OSC1	_	_	±2	μA	$Vss \le VPIN \le VDD,$ XT and HS modes

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.


24.2 AC Characteristics and Timing Parameters

This section defines PIC24HJXXXGPX06A/X08A/ X10A AC characteristics and timing parameters.

TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	-40°C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as described in Table 24-1.

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_		400	pF	In l ² C™ mode

TABLE 24-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА		rics	Standard Op (unless othe Operating ter	rwise st	ated) œ -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	-
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

С СНА	RACTER	ISTICS		Standard Operatir (unless otherwise Operating tempera	stated) ture -40)°C ≤ Ta ≤	V to 3.6V ≤ +85°C for Industrial : +125°C for Extended	
aram No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
/10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	—	
/11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	—	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	—	
/120	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
/121	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns		
125	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	_	ns	1	
126	THD:DAT	Data Input	100 kHz mode	0	_	μS	—	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	_	μS		
/30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition	
//31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated	
/33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
/134	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
/140	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	—	
		From Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	—	
/45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be	
			400 kHz mode	1.3	_	μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	_	μS	transmission can start	
150	Св	Bus Capacitive L	oading	—	400	pF	—	
/151	TPGD	Pulse Gobbler De	-	65	390	ns	See Note 3	
/151	TPGD	Pulse Gobbler De	elay			390		

TABLE 24-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

25.1 High Temperature DC Characteristics

TABLE 25-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temperature Range	Max MIPS
Characteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06A/X08A/X10A
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11 for the minimum and maximum BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

TABLE 23-2. THERIMAL OPERATING CONDITIONS					
Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(Tj - Ta)/θj	A	W

TABLE 25-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	CTERISTIC	S	(unless o	Operating otherwise temperat	stated)		to 3.6V ⊦150°C for High Temperature	
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions					
Operating V	Voltage							
HDC10	Supply Vo	Itage						
	Vdd		3.0	3.3	3.6	V	-40°C to +150°C	

TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	perating Conditions: 3.0V to 3.6V erwise stated) emperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No.	Typical	Мах	Units	Inits Conditions				
Power-Down	Current (IPD)							
HDC60e	250	2000	μA	uA +150°C 3.3V Base Power-Down Current ^(1,3)				
Note 1: Base IPD is measured with all perioberals and clocks shut down. All I/Os are configured as inputs and								

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-14: ADC MODULE SPECIFICATIONS

/ CHARAC	Standard Operating Con Operating temperature		•		-		
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
			Referenc	e Input	s		
HAD08	IREF	Current Drain	—	250	600	μA	ADC operating, See Note 1
					50	μA	ADC off, See Note 1

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

-	AC TERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	AD	C Accuracy (12-bit Mode) – Meas	uremen	ts with ex	kternal \	/REF+/VREF- ⁽¹⁾
AD23a	Gerr	Gain Error		5	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error		2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with in	ternal V	/REF+/VREF- ⁽¹⁾
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
	•	Dynamic	Performa	nce (12	-bit Mode	e) ⁽²⁾	•
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz	—

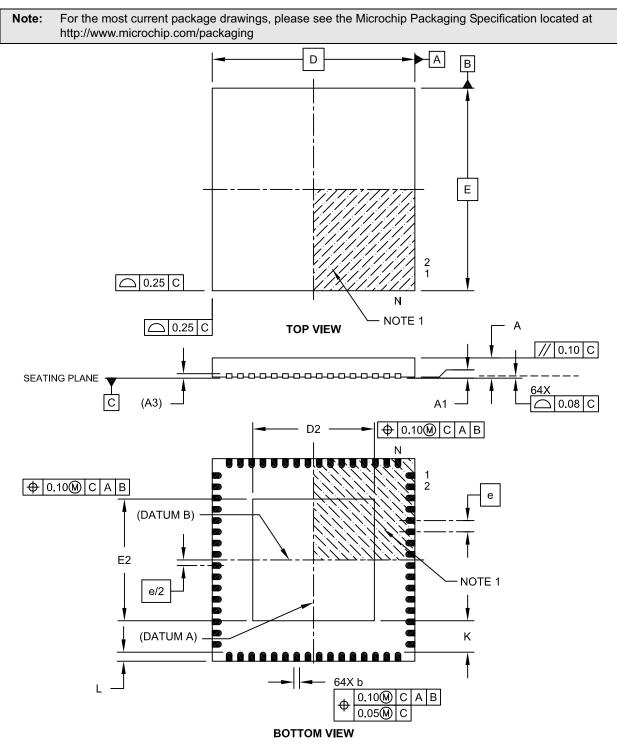
Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 25-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

-	AC TERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise state Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Param No.	Symbol	Characteristic Min Typ Max U				Units	Conditions
	AD	C Accuracy (12-bit Mode)	– Measu	rements	s with ex	ternal V	REF+/VREF- ⁽¹⁾
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
	AD	C Accuracy (12-bit Mode)	– Measu	rement	s with int	ernal V	REF+/VREF- ⁽¹⁾
AD23b	Gerr	Gain Error		7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error		3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
	•	Dynamic Pe	erformar	nce (10-b	oit Mode)	(2)	•
HAD33b	Fnyq	Input Signal Bandwidth	—		400	kHz	—


Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

27.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

PIC24HJXXXGPX06A/X08A/X10A

F

Flash Program Memory59
Control Registers60
Operations60
Programming Algorithm62
RTSP Operation60
Table Instructions59
Flexible Configuration
FSCM
Delay for Crystal and PLL Clock Sources
Device Resets
н
High Temperature Electrical Characteristics
1
I/O Ports
Parallel I/O (PIO)141
Write/Read Timing
l ² C
Operating Modes
Registers
I ² C Module
I2C1 Register Map
I2C2 Register Map
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Registers
Input Change Notification Module
Instruction Addressing Modes
File Register Instructions
Fundamental Modes Supported
MCU Instructions
Move and Accumulator Instructions
Other Instructions
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Internal RC Oscillator
Use with WDT
Internet Address
Internet Address321Interrupt Control and Status Registers73IECx73IFSx73INTCON173INTCON273
Internet Address321Interrupt Control and Status Registers73IECx73IFSx73INTCON173INTCON273INTTREG73
Internet Address 321 Interrupt Control and Status Registers 73 IECx 73 IFSx 73 INTCON1 73 INTCON2 73 INTREG 73 IPCx 73
Internet Address321Interrupt Control and Status Registers73IECx73IFSx73INTCON173INTCON273INTTREG73IPCx73Interrupt Setup Procedures111
Internet Address321Interrupt Control and Status Registers73IECx73IFSx73INTCON173INTCON273INTTREG73IPCx73Interrupt Setup Procedures111Initialization111
Internet Address 321 Interrupt Control and Status Registers 73 IECx 73 IFSx 73 INTCON1 73 INTCON2 73 INTREG 73 IPCx 73 Interrupt Setup Procedures 111 Initialization 111 Interrupt Disable 111
Internet Address321Interrupt Control and Status Registers73IECx73IFSx73INTCON173INTCON273INTTREG73IPCx73Interrupt Setup Procedures111Initialization111Interrupt Disable111Interrupt Service Routine111
Internet Address321Interrupt Control and Status Registers73IECx73IFSx73INTCON173INTCON273INTTREG73IPCx73Interrupt Setup Procedures111Initialization111Interrupt Disable111Interrupt Service Routine111Trap Service Routine111
Internet Address 321 Interrupt Control and Status Registers 73 IECx 73 IFSx 73 INTCON1 73 INTCON2 73 INTREG 73 IPCx 73 Interrupt Setup Procedures 111 Interrupt Disable 111 Interrupt Service Routine 111 Interrupt Vector Table (IVT) 69
Internet Address. 321 Interrupt Control and Status Registers. 73 IECx. 73 IFSx. 73 INTCON1 73 INTCON2 73 INTREG 73 IPCx. 73 Interrupt Setup Procedures 111 Initialization 111 Interrupt Service Routine 111 Interrupt Service Routine 111 Interrupt Vector Table (IVT) 69 Interrupts Coincident with Power Save Instructions 134
Internet Address

Μ

Memory Organization
Modes of Operation
Disable
Initialization
Listen All Messages 181
Listen Only 181
Loopback 181
Normal Operation 181
MPLAB ASM30 Assembler, Linker, Librarian 238
MPLAB Integrated Development
Environment Software 237
MPLAB PM3 Device Programmer 240
MPLAB REAL ICE In-Circuit Emulator System
MPLINK Object Linker/MPLIB Object Librarian 238
Multi-Bit Data Shifter 28
Ν
NVM Module
Register Map52
0
Open-Drain Configuration
Output Compare 155
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD)
Pinout I/O Descriptions (table)
PMD Module
Register Map
POR and Long Oscillator Start-up Times
PORTA
Register Map
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 70 Register Map 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 71 Register Map 51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 51 PORTG 51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Register Map51PORTG71Register Map51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE50Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD50Register Map50PORTE51Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB60Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 50 PORTE 50 PORTE 51 PORTG 51 PORTG 51 Power-Saving Features 133 Clock Frequency and Switching 133 Program Address Space 29 Construction 55 Data Access from Program Memory Using 58 Program Space Visibility 58 Data Access from Program Memory Using Table Instructions Using Table Instructions 57 Data Access from, Address Generation 56 Memory Map 29
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using Program Space Visibility58Data Access from Program Memory Using Table Instructions57Data Access from, Address Generation56Memory Map29Table Read Instructions29
Register Map50PORTBRegister MapRegister Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF8Register Map51PORTG51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDH57TBLRDL57
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using57Data Access from Program Memory29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory133Interrupt Vector30
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58