

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp206at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and requirements timing information in the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

FIGURE 3-2:	PIC24HJXXXGPX06A/X08A/X10A PROGRAMMER'S MODEL
	D15 D0
	W0/WREG
	W1
	W2 DO Shadow
	W3 Legend
	W4
	W5
	W6
	W7
	W8 Working Registers
	W9
	W10
	W11
	W12
	W13
	W14/Frame Pointer
	W15/Stack Pointer
	SPLIM Stack Pointer Limit Register
PC22	PC0
	0 Program Counter
7	0
TBLPA	Data Table Page Address
7	
P5	AG Program Space Visibility Page Address
	<u>15 0</u>
	RCOUNT REPEAT Loop Counter
	15 0
	CORCON Core Configuration Register
	DC IPL2 IPL1 IPL0 RA N OV Z C STATUS Register

TABLE 4-28: PORTE REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	_	—	_	—	_	—	_	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	OOFF
PORTE	02DA	—	—	—	—	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	-	—	_	—			LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	—	—	TRISF13	TRISF12	—	—	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13	RF12	_	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	XXXX
LATF	02E2	_	_	LATF13	LATF12	_	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX
ODCF ⁽²⁾	06DE	_	_	ODCF13	ODCF12	_	_	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	_	—	TRISG9	TRISG8	TRISG7	TRISG6	—	—	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	XXXX
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	XXXX
ODCG ⁽²⁾	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

5.2 RTSP Operation

The PIC24HJXXXGPX06A/X08A/X10A Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 24-12 displays typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 24-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `bl11111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

The two SFRs that are used to read and write the program Flash memory are:

- NVMCON
- NVMKEY

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

11.0				11.0							
0-0	R/W-1		R/W-U	0-0	R/ VV- I		K/W-U				
		1212<2:0>				0021P<2:0>					
DIL 15							DIL 8				
0-0	R/W-I	R/W-U	R/W-U	0-0	R/VV-1		R/W-U				
		IC2IP<2.02		_		DIVIAUIP<2.0>	h:t 0				
DIL 7							DILU				
Legend:											
P = Peadable	bit	\// = \//ritable	nit	II – Unimplei	mented hit re	ad as '0'					
n = Value at E		'1' = Bit is set	JIL	0' = Bit is de	ared	v - Bit is unkno					
		I – DILIS SEL			aleu		JVVII				
hit 15	Unimplomo	ntad: Pead as '	۱'								
bit 14 12		Timor2 Interrupt	, Driority bite								
DIL 14-12	121F < 2.0>.	unt is priority 7 (k	nonly bits	v interrunt)							
	•		lightest phone	ly interrupt)							
	•										
	•										
		upt is priority 1	abled								
bit 11	Linimplemented: Dead as '0'										
bit 10_8		• Output Compa	, re Channel 2	Interrunt Prior	ity hite						
DIL 10-0		unt is priority 7 (k	ne Channel 2	v interrunt)	ity bits						
	•		lightest phone	ly interrupt)							
	•										
	•										
		upt is priority 1	abled								
hit 7		nted: Pead as '	, ,								
bit 6 4		Input Capture C	, bannol 2 Intr	orrupt Drigrity b	vite						
DIL 0-4	111 = Intern	unt is priority 7 (k	nannei z inte	winterrunt)	/115						
	•		lightest phone	ly interrupt)							
	•										
	•										
		upt is priority 1	abled								
hit 3		nted: Read as '(),								
bit 2-0			, al 0 Data Tra	nsfer Complete	Interrunt Prid	ority bite					
Dit 2-0		unt is priority 7 (k	highest priorit	hsier Complete	e interrupt i no	JILY DILS					
	•		lightest phone	ly interrupt)							
	•										
	•										
	001 = Interro	upt is priority 1	ahled								

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

r							,					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		U1RXIP<2:0>		—		SPI1IP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		SPI1EIP<2:0>				T3IP<2:0>						
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown								
							J					
bit 15	Unimplem	ented: Read as ')'									
bit 14-12	U1RXIP<2	:0>: UART1 Rece	iver Interrupt	Priority bits								
	111 = Inter	rrupt is priority 7 (I	niahest priori	tv interrupt)								
	•	-FF2 (J	- J								
	•											
	• 001 - Intor	rupt is priority 1										
	001 = Inter	rrupt is priority i	abled									
bit 11	Unimplem	Unimplemented: Read as '0'										
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits											
	111 = Inter	rrupt is priority 7 (I	niahest priori	tv interrupt)								
	•			·) ······								
	•											
	• 001 - Intor	rupt is priority 1										
	001 - Inter	rrupt is priority i rrupt source is dis	abled									
bit 7	Unimplem	ented: Read as ')'									
bit 6-4	SPI1EIP<2	2:0>: SPI1 Frror Ir	Iterrupt Priori	tv bits								
	111 = Inter	rrupt is priority 7 (I	niahest priori	ty interrupt)								
	•		J	- J								
	•											
	• 001 - Intor	rupt is priority 1										
	001 = Inter	rrupt is priority i rrupt source is dis	abled									
bit 3	Unimplem	ented: Read as ')'									
bit 2-0	T3IP<2:0>	: Timer3 Interrupt	Priority bits									
5.12.0	111 = Inter	rrupt is priority 7 (I	niahest priorit	tv interrupt)								
	•			·) ······								
	•											
	•	ruptic priority 4										
	001 = inter	rrupt is priority 1	abled									

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		C1IP<2:0>				C1RXIP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		SPI2IP<2:0>				SPI2EIP<2:0>						
bit 7							bit 0					
Legend:	L:4		L :4									
R = Readable	DIT	vv = vvritable	DIT	U = Unimplei	mented bit, rea	ad as 'U'						
-n = value at i	POR	= Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkn	lown					
hit 15	Unimpleme	nted: Read as '(ז'									
bit 14-12		FCAN1 Event In	, iterrunt Priorit	ty hits								
51(1112	111 = Interru	upt is priority 7 (I	niahest priorit	v interrupt)								
	•			,								
	•											
	• 001 = Interri	upt is priority 1										
	000 = Interru	upt source is dis	abled									
bit 11	Unimpleme	Unimplemented: Read as '0'										
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits											
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)								
	•											
	•											
	001 = Intern	upt is priority 1	abled									
bit 7	Unimpleme	nted: Read as '(טאופט ז'									
bit 6-4	SPI2IP<2:0>	SPI2 Event Int	errupt Priority	v bits								
	111 = Interru	upt is priority 7 (I	niahest priorit	v interrupt)								
	•		5	J								
	•											
	• 001 = Interri	upt is priority 1										
	000 = Interru	upt source is dis	abled									
bit 3	Unimpleme	nted: Read as ')'									
bit 2-0	SPI2EIP<2:0	0>: SPI2 Error Ir	nterrupt Priori	ty bits								
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										
	000 = Interru	upt source is dis	abled									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T6IP<2:0>				DMA4IP<2:0>	
bit 15					·		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	_	—		OC8IP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T6IP<2:0>: ⊺	imer6 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	sabled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	DMA4IP<2:0	>: DMA Chann	iel 4 Data Tra	nsfer Complete	e Interrupt Prior	ity bits	
	111 = Interru	pt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is dis	sabled				
bit 7-3	Unimplemen	ted: Read as	0'				
bit 2-0	OC8IP<2:0>:	Output Compa	are Channel 8	3 Interrupt Prior	rity bits		
	111 = Interru	pt is priority 7 (nignest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	sabled				

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	—		ILR	<3:0>		
bit 15	·						bit 8	
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
				VECNUM<6:0	>			
bit 7	•						bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
L								
bit 15-12	Unimplement	ted: Read as '	0'					
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits				
	1111 = CPU I	nterrupt Priorit	y Level is 15					
	•							
	•							
	0001 = CPU li	nterrupt Priority	y Level is 1					
	0000 = CPU I	nterrupt Priorit	y Level is 0					
bit 7	Unimplement	ted: Read as '	0'					
bit 6-0	VECNUM<6:0	>: Vector Num	ber of Pendir	ng Interrupt bits	;			
	1111111 = In	terrupt Vector	pending is nu	mber 135				
	•							
	•							
	0000001 = In	terrupt Vector	pending is nu	mber 9				
	0000000 = In	terrupt Vector	pending is nu	mber 8				

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled

REGISTER 18-2: Uz	xSTA: UARTx STATUS AN	ID CONTROL REGISTER
-------------------	-----------------------	---------------------

R/M-0	R/\\/_0	R/W-0	U_0	R/W-0 HC	R/\\/_0	R-0	R-1
UTXISEI 1				UTXBRK		UTXBE	TRMT
bit 15	UTAIL	OTAIOLLO		OTABLIC	OTALI	0 I/(BI	bit 8
2.1.10							
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7				1		I	bit 0
Legend:		HC = Hardwar	e cleared			C = Clear onl	y bit
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15,13 bit 14	UTXISEL<1:0 11 = Reserve 10 = Interrupt transmit 01 = Interrupt operation 00 = Interrupt at least o UTXINV: Trans If IREN = 0: 1 = UxTX Idle 0 = UxTX Idle 1 = IrDA [®] end 0 = IrDA [®] end	D>: Transmissio d; do not use when a charace buffer becomes when the last of ns are complete when a charace ne character op nsmit Polarity In e state is '0' e state is '1' coded UxTX Idle coded UxTX Idle	n Interrupt M ter is transfe s empty character is s ed ter is transfe ben in the transfe version bit	ode Selection rred to the Trar hifted out of th rred to the Trar nsmit buffer)	bits nsmit Shift Regis e Transmit Shift nsmit Shift Regis	ster, and as a r Register; all tra ster (this implie	esult, the ansmit s there is
bit 12	Unimplement	ted: Read as 'o	,				
bit 11	UTXBRK: Tra	ansmit Break bit					
bit 10	 Send Syr cleared b Sync Bre UTXEN: Transit Transmit Transmit 	nc Break on nex y hardware upo ak transmissior smit Enable bit ⁽ enabled, UxTX disabled, any p	t transmission on completion disabled or 1) pin controlle pending trans	n – Start bit, fo נכסmpleted d by UARTx mission is abo	llowed by twelve	e '0' bits, follow	ed by Stop bit; pin controlled
	by port.						
bit 9	UTXBF: Trans 1 = Transmit 0 = Transmit	smit Buffer Full buffer is full buffer is not ful	Status bit (re	ad-only) e more characte	er can be writter	٦	
bit 8	TRMT: Transr	nit Shift Registe	er Empty bit (read-only)			
	1 = Transmit 0 = Transmit	Shift Register is Shift Register i	empty and tr s not empty, a	ransmit buffer is a transmission	s empty (the last is in progress o	transmission h r queued	as completed)
bit 7-6	URXISEL<1:0 11 = Interrupt 10 = Interrupt 0x = Interrupt buffer. F	D>: Receive Interiors is set on UxRS is set on UxRS is set on UxRS is set when ar Receive buffer h	errupt Mode s R transfer m R transfer m ny character as one or mo	Selection bits aking the recei aking the recei is received and ore characters.	ive buffer full (i.e ve buffer 3/4 ful transferred fro	e., has 4 data c I (i.e., has 3 da m the UxRSR	haracters) ta characters) to the receive

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers.

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user application switches to Disable mode within this 11-bit period, the transmission is then aborted and the corresponding TXABT bit is set and the TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER [·]	19-16: CiRXI (n = 0	⁻ FnSID: ECAN [™] , 1,, 15)	MODULE	ACCEPTANC	E FILTER n S	TANDARD ID	ENTIFIER
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SID	<10:3>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID<2:0>		_	EXIDE	—	EID<	17:16>
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5 bit 4 bit 3	SID<10:0>: 1 = Message 0 = Message Unimpleme EXIDE: Exte	Standard Identifies address bit SIE address bit SIE address bit SIE anted: Read as '(anded Identifier	ier bits Dx must be '1 Dx must be '0 D' Enable bit	' to match filter ' to match filter			
bit 2 bit 1-0	If MIDE = 1: 1 = Match or 0 = Match or If MIDE = 0: Ignore EXID Unimpleme EID<17:16> 1 = Message 0 = Message	nly messages wi nly messages wi DE bit. nted: Read as 'd : Extended Ider e address bit EIE e address bit EIE	th extended th standard i o' tifier bits Dx must be '1 Dx must be '0	identifier addre dentifier addres .' to match filter i' to match filter	sses		

REGISTER 19-17: CiRXFnEID: ECANTM MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-22: CiRXFUL1: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL15:RXFUL0:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CiRXFUL2: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL31:RXFUL16:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15				•		•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—			DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, read as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
bit 15	·	-			•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
bit 7	·	÷		·	•	·	bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is ur		x = Bit is unki	nown

REGISTER 20-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH^(1,2)

bit 15-0 CSS<31:16>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 20-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15		•				l	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 CSS<15:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREF-.

2: CSSx = ANx, where x = 0 through 15.

Bit Field	Register	RTSP Effect	Description
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment
			Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
			Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
			(FOR 64K DEVICES) x11 = No Secure program Flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard Security; general program Flash segment starts at End of SS, ends at EOM 0x = High Security; general program Flash segment starts at End of ESS, ends at EOM
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected

TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	Conditions		
Operating Current (IDD) ⁽¹⁾						
DC20d	27	30	mA	-40°C	3.3V	
DC20a	27	30	mA	+25°C		
DC20b	27	30	mA	+85°C		TO MIES
DC20c	27	35	mA	+125°C		
DC21d	36	40	mA	-40°C	3.3V	16 MIPS
DC21a	37	40	mA	+25°C		
DC21b	38	45	mA	+85°C		
DC21c	39	45	mA	+125°C		
DC22d	43	50	mA	-40°C	3.3V	20 MIPS
DC22a	46	50	mA	+25°C		
DC22b	46	55	mA	+85°C		
DC22c	47	55	mA	+125°C		
DC23d	65	70	mA	-40°C	3.3V	30 MIPS
DC23a	65	70	mA	+25°C		
DC23b	65	70	mA	+85°C		
DC23c	65	70	mA	+125°C		
DC24d	84	90	mA	-40°C	2.2)/	
DC24a	84	90	mA	+25°C		
DC24b	84	90	mA	+85°C	0.0 v	40 Mill 3
DC24c	84	90	mA	+125°C		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- 2: These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

Revision C (March 2011)

This revision includes typographical and formatting changes throughout the data sheet text. In addition, all occurrences of VDDCORE have been removed.

All other major changes are referenced by their respective section in the following table.

TABLE B-2:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers"	The frequency limitation for device PLL start-up conditions was updated in Section 2.7 "Oscillator Value Conditions on Device Start-up".
	The second paragraph in Section 2.9 "Unused I/Os" was updated.
Section 4.0 "Memory Organization"	The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-6): • TMR1 • TMR2 • TMR3 • TMR4 • TMR5 • TMR6 • TMR7
	• TMR8 • TMR9
Section 9.0 "Oscillator Configuration"	Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1). Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2).
	Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3). Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4).
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the VREFL references in the ADC1 module block diagram (see Figure 20-1).
Section 21.0 "Special Features"	Added a new paragraph and removed the third paragraph in Section 21.1 "Configuration Bits".
	Added the column "RTSP Effects" to the Configuration Bits Descriptions (see Table 21-2).