

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp210a-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE 4	-/. I	NFUIC	JAFIU		JOIER													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regis	er							xxxx
IC1CON	0142	—	_	ICSIDL	—	—	_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144	144 Input 2 Capture Register										xxxx						
IC2CON	0146	—	_	ICSIDL	—	—	_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3BUF	0148								Input 3 Ca	apture Regis	er							xxxx
IC3CON	014A	—	_	ICSIDL	—	—	_			ICTMR	ICI<	ICI<1:0> ICOV I				ICM<2:0>		0000
IC4BUF	014C								Input 4 Ca	apture Regis	er							xxxx
IC4CON	014E	—	_	ICSIDL	—	—	_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC5BUF	0150								Input 5 Ca	apture Regis	er							xxxx
IC5CON	0152	—	_	ICSIDL	—	—	_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC6BUF	0154								Input 6 Ca	apture Regis	er							xxxx
IC6CON	0156	—	_	ICSIDL	—	—	_			ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	apture Regis	er							xxxx
IC7CON	015A	—	_	ICSIDL	—	—	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8 Ca	apture Regis	er							xxxx
IC8CON	015E	—	—	ICSIDL	—	—	—	—	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
Logondu			Decet				Desetual			المعادم والأحما	Din∐iah day							

C24HJXXXGPX06A/X08A/X10A

TABLE 4-7: INPUT CAPTURE REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

7.3 Interrupt Control and Status Registers

PIC24HJXXXGPX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VEC-NUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

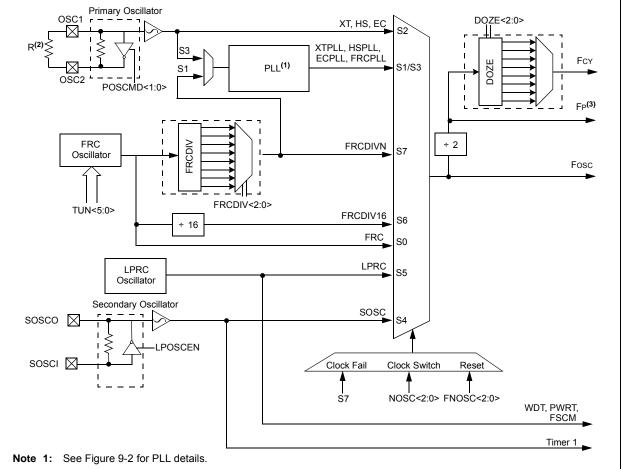
The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IE	DMA4IE	—	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE
bit 7				0			bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	T6IE: Timer6	Interrupt Enabl	e bit				
		request enable					
	0 = Interrupt r	equest not ena	bled				
bit 14		A Channel 4 D		Complete Interi	rupt Enable bit		
		equest enable equest not ena					
bit 13	•	ted: Read as '					
bit 12	•	ut Compare Ch		unt Enable bit			
511 12	•	request enable					
		equest not ena					
bit 11	OC7IE: Outpu	ut Compare Ch	annel 7 Interr	upt Enable bit			
		equest enable equest not ena					
bit 10	OC6IE: Outpu	ut Compare Ch	annel 6 Interr	upt Enable bit			
		equest enable equest not ena					
bit 9	OC5IE: Outpu	ut Compare Ch	annel 5 Interr	upt Enable bit			
		equest enable equest not ena					
bit 8		Capture Channe		Enable bit			
		equest enable equest not ena					
bit 7		Capture Channe		Enable bit			
	-	equest enable					
	•	request not ena					
bit 6	-	Capture Channe		Enable bit			
		equest enable equest not ena					
bit 5	•	Capture Channe		-nable bit			
	-	equest enable	-				
	0 = Interrupt r	equest not ena	bled				
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Interi	rupt Enable bit		
		equest enable equest not ena					
bit 3	-	Event Interrup					
bit J		equest enable					
		equest not ena					

9.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) of the "dsPIC33F/dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24HJXXXGPX06A/X08A/X10A OSCILLATOR SYSTEM DIAGRAM

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 MΩ must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU. Throughout this document FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used in any ratio other than 1:1, which is the default.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	_	PLLDIV<8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLDI	V<7:0>				
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-9	Unimpleme	nted: Read as '	0'					
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)		
	111111111	= 513						
	•							
	•							
	•							
	000110000	= 50 (default)						
	•							
	•							
	•							
	000000010 000000001							
	000000000	-						
	300000000	-						

Note 1: This register is reset only on a Power-on Reset (POR).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_		_	—	_		_		
bit 15							bit		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-6	Unimplemen	ted: Read as '	0'						
bit 15-6 bit 5-0	•	ted: Read as ' RC Oscillator T							
	TUN<5:0>: F		uning bits ⁽¹⁾	345 MHz)					
	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾	345 MHz)					
	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾	345 MHz)					
	TUN<5:0>: F 111111 = Ce • •	RC Oscillator T nter frequency	⁻ uning bits ⁽¹⁾ – 0.375% (7.	·					
	TUN<5:0>: F 111111 = Ce 100001 = Ce	RC Oscillator T	- 0.375% (7. – 11.625% (6	.52 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce 100001 = Ce 100000 = Ce 011111 = Ce 011110 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8 + 11.25% (8.1	.52 MHz) MHz) .23 MHz) 20 MHz)					

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽²⁾

- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.
 - 2: This register is reset only on a Power-on Reset (POR).

NOTES:

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON		TSIDL		—		—						
bit 15							bit					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
0-0	TGATE		S<1:0>	T32	0-0	TCS ⁽¹⁾	0-0					
 bit 7	IGAIE	TCKP	5<1.0>	132	_	1030	bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own					
bit 15	TON: Timerx	On bit										
	When T32 = 1	L:										
	1 = Starts 32- 0 = Stops 32-											
	<u>When T32 = 0</u>											
	1 = Starts 16- 0 = Stops 16-											
bit 14	Unimplemen		٠́ ()'									
bit 13	TSIDL: Stop i											
	•	ue module ope	eration when d	evice enters Idl de	e mode							
bit 12-7	Unimplemen	-										
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit											
	When TCS = 1:											
	This bit is igno											
		$\frac{\text{When TCS} = 0}{1 = \text{Gated time accumulation enabled}}$										
	 Gated time accumulation enabled Gated time accumulation disabled 											
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	le Select bits								
	11 = 1:256											
	10 = 1:64											
	01 = 1:8 00 = 1:1											
bit 3	T32: 32-bit Ti	mer Mode Sel	ect bit									
	1 = Timerx an 0 = Timerx an											
bit 2	Unimplemen	-										
bit 1	TCS: Timerx											
	1 = External c 0 = Internal cl	clock from pin		rising edge)								
		· · /										

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

20.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

20.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546061

20.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

24.1 DC Characteristics

Characteristic	VDD Range	Temp Range	Max MIPS							
Characteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06A/X08A/X10A							
	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40							
_	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40							

TABLE 24-1: OPERATING MIPS VS. VOLTAGE

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11 for the minimum and maximum BOR values.

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+150	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Pdmax	(TJ — ΤΑ)/θ.	IA	W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

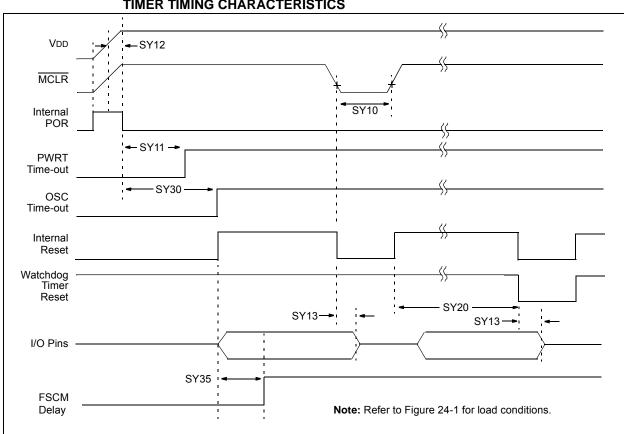
Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40		°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θja	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θja	28	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHA	RACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic			Typ ⁽¹⁾	Max	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, Vcap, SOSCI, SOSCO, and RB11	
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VcAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾	
DI60c	Σ ΙΙΟΤ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHA	RACTER	ISTICS	Standard (unless of Operating	therwis	e stated ature	l) -40°C ≤	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL \leq 3 mA, VDD = 3.3V
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IOL \leq 6 mA, VDD = 3.3V
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	IOL \leq 10 mA, VDD = 3.3V
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	$IOL \ge -3$ mA, VDD = 3.3V
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	$IOL \ge -6$ mA, VDD = 3.3V
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	IOL ≥ -10 mA, VDD = 3.3V
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	IOH ≥ -5 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1
DO20A	Voн1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	-	_	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1
			3.0	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -3 \mbox{ mA, VDD} = 3.3 V \\ \mbox{See Note 1} \end{array}$
		Output High Voltage 8x Source Driver Pins - OSC2,	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1
		CLKO, RC15	2.0			V	IOH ≥ -12 mA, VDD = 3.3V See Note 1
			3.0				IOH ≥ -4 mA, VDD = 3.3V See Note 1

TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

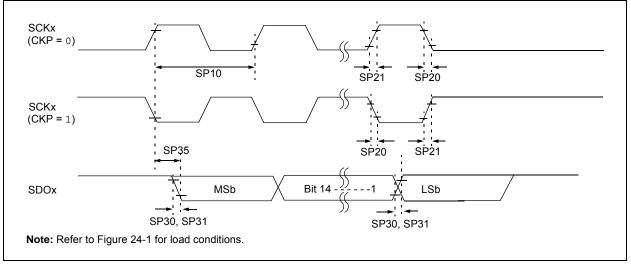
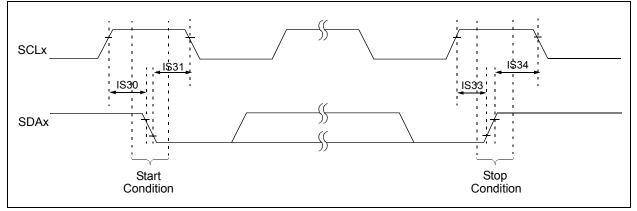
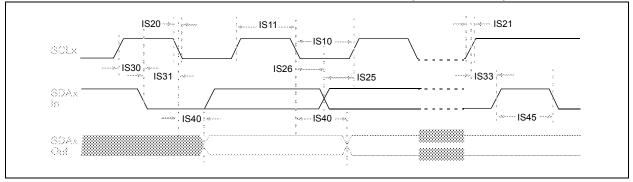


FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS


TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 24-29	—	—	0,1	0,1	0,1
10 MHz	—	Table 24-30	—	1	0,1	1
10 MHz	—	Table 24-31	—	0	0,1	1
15 MHz	—	—	Table 24-32	1	0	0
11 MHz	—	—	Table 24-33	1	1	0
15 MHz	_	_	Table 24-34	0	1	0
11 MHz			Table 24-35	0	0	0


FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

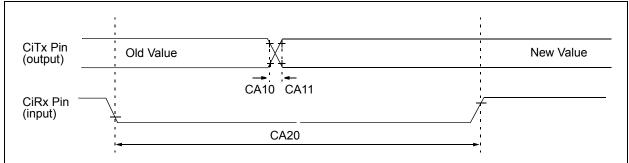

FIGURE 24-19: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

FIGURE 24-21: ECAN™ MODULE I/O TIMING CHARACTERISTICS

TABLE 24-38: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extende} \end{array}$				$A \le +85^{\circ}C$ for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time	—		_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	—		_	ns	See parameter D031
CA20	Tcwf	Pulse-Width to Trigger CAN Wake-up Filter	120	—	l	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

АС СНА	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	its	bits		
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity			_	—	Guaranteed	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	its	bits		
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity	—		_	—	Guaranteed	
		Dynamic	Performa	ance (10	-bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_	
AD32b	SFDR	Spurious Free Dynamic Range	72	—	—	dB	_	
AD33b	Fnyq	Input Signal Bandwidth			550	kHz	_	
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits	—	

TABLE 24-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽¹⁾

Note 1: Injection currents > |0| can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

DC CHARACTERISTICS			UTPUT SPECIFICATIONSStandard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for High Temperature				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL ≤ 1.8 mA, VDD = 3.3V See Note 1
HDO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IOL ≤ 3.6 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	Io∟ ≤ 6 mA, Voo = 3.3V See Note 1
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	Io∟ ≥ -1.8 mA, VDD = 3.3V See Note 1
HDO20 V	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	Io∟ ≥ -3 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1
			3.0	_	_		ІОн ≥ -1.4 mA, VDD = 3.3V See Note 1
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		IOH ≥ -3.9 mA, VDD = 3.3V See Note 1
HDO20A	Voн1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 8x Source Driver Pins - OSC2, CLKO,	1.5			V	IOH ≥ -7.5 mA, VDD = 3.3V See Note 1
		RC15	2.0				IOH ≥ -6.8 mA, VDD = 3.3V See Note 1
			3.0				IOH ≥ -3 mA, VDD = 3.3V See Note 1

TABLE 25-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

Section Name Update Description Section 24.0 "Electrical Characteristics" Removed Note 4 from the DC Temperature and Voltage	TABLE B-2: MAJOR SECTION UPDAT	ES (CONTINUED)
	Section Name	Update Description
Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Specifications (see Table 24-9).	Section 24.0 "Electrical Characteristics"	Specifications (see Table 24-4). Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 24-9). Removed Note 2 from the AC Characteristics: Internal RC Accuracy

TABLE B-2: MAJOR SECTION UPDATES (CONTINUED)

	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 24-18).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 24-20).
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 24-39).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 24-40).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 24-41).
	Added DMA Read/Write Timing Requirements (see Table 24-44).
Section 25.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 25-2).
	Added Note 3 and updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 25-15).
	Added Note 3 and updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 25-16).

S

Serial Peripheral Interface (SPI)	
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	
Special Features	
SPI Module	
SPI1 Register Map	41
SPI2 Register Map	41
Symbols Used in Opcode Descriptions	
System Control	
Register Map	

т

Temperature and Voltage Specifications	
AC	, 291
Timer1	. 145
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	. 147
Timing Characteristics	
CLKO and I/O	. 255
Timing Diagrams	
10-bit Analog-to-Digital Conversion (CHPS<1:0> =	01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> =	111,
SAMC<4:0> = 00001)	. 284
10-bit Analog-to-Digtial Conversion (CHPS<1:0> =	• 01,
SIMSAM = 0, ASAM = 0,	
SSRC<2:0> = 000)	. 284
12-bit Analog-to-Digital Conversion	
(ASAM = 0, SSRC<2:0> = 000)	. 282
ECAN I/O	. 278
External Clock	. 253
I2Cx Bus Data (Master Mode)	. 274
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	. 274
I2Cx Bus Start/Stop Bits (Slave Mode)	. 276
Input Capture (CAPx)	
OC/PWM	
Output Compare (OCx)	. 260
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	. 256
Timer1, 2 and 3 External Clock	. 258
Timing Requirements	
ADC Conversion (10-bit mode)	. 295
ADC Conversion (12-bit Mode)	
CLKO and I/O	
External Clock	. 253
Input Capture	. 260
SPIx Master Mode (CKE = 0)	
SPIx Module Master Mode (CKE = 1)	
SPIx Module Slave Mode (CKE = 0)	
SPIx Module Slave Mode (CKE = 1)	

10-bit Analog-to-Digital Conversion
Requirements 285
CAN I/O Requirements
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode) 277
Output Compare Requirements
PLL Clock 254, 291
Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out
Reset Requirements
Simple OC/PWM Mode Requirements
Timer1 External Clock Requirements
Timer2 External Clock Requirements
Timer3 External Clock Requirements 259
U
UART Module
UART1 Register Map 40
UART2 Register Map 41
V
Voltage Regulator (On-Chip) 226
W
Watchdog Timer (WDT) 221, 227
Programming Considerations
WWW Address

WWW, On-Line Support 13

Timing Specifications