

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp210a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-23. ECANZ REGISTER MAP WHEN CZCTRET.WIN = I FOR FICZ4113230GF010A DEVICES CHET (CONTINUED)																		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11EID	056E		EID<15:8>						EID<7:0>						xxxx			
C2RXF12SID	0570		SID<10:3>							SID<2:0> — EXIDE —			—	EID<1	7:16>	xxxx		
C2RXF12EID	0572		EID<15:8>							EID<7:0>						xxxx		
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C2RXF13EID	0576				EID<	15:8>				EID<7:0>						xxxx		
C2RXF14SID	0578				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx		
C2RXF14EID	057A	EID<15:8>						EID<7:0>						xxxx				
C2RXF15SID	057C				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx		
C2RXF15EID	057E				EID<	15:8>							EID<7	/:0>				xxxx

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610A DEVICES ONLY (CONTINUED)

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

DS70592D-page 49

7.0 INTERRUPT CONTROLLER

- **Note 1:** This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70184) of the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24HJXXXGPX06A/X08A/X10A CPU. It has the following features:

- · Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of 8 nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24HJXXXGPX06A/X08A/X10A devices implement up to 61 unique interrupts and 5 nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24HJXXXGPX06A/X08A/X10A device clears its registers in response to a Reset which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:									
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15	NSTDIS:	nterrupt Nesting Disable bit	t						
	1 = Interru	pt nesting is disabled							
	0 = Interrupt nesting is enabled								
bit 14-7	Unimplem	nented: Read as '0'							
bit 6	DIV0ERR:	Arithmetic Error Status bit							
	1 = Math e	error trap was caused by a c	divide by zero v a divide by zero						
bit 5	DMACER	R: DMA Controller Error Sta	atus bit						
	1 = DMA c	controller error trap has occ	urred						
	0 = DMA c	controller error trap has not	occurred						
bit 4	MATHERF	R: Arithmetic Error Status bi	t						
	1 = Math e	error trap has occurred							
	0 = Math e	error trap has not occurred							
bit 3	ADDRER	R: Address Error Trap Statu	is bit						
	1 = Addres	ss error trap has occurred	a d						
1.11 O		ss error trap has not occurre	ea						
bit 2	SIKERR:	Stack Error Trap Status bit							
	$\perp = Stack$	error trap has occurred							
hit 1		Chor trap has not occurred	tue hit						
DIL		tor failure trap has occurred	d						
	1 = Oscillar0 = Oscillar	ator failure trap has occurre	urred						
bit 0	Unimplem	nented: Read as '0'							
	-								

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INT0IF
bit 7							bit 0
Logond							
R = Readable	bit	W = Writable	bit	l I = l Inimplei	mented hit read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkn	iown
			-				-
bit 15	Unimplemen	ted: Read as	0'				
bit 14	DMA1IF: DM	A Channel 1 D	ata Transfer C	Complete Interr	rupt Flag Status	bit	
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 13	AD1IF: ADC1	Conversion C	Complete Interi	rupt Flag Statu	is bit		
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 12	U1TXIF: UAR	RT1 Transmitte	r Interrupt Flag	g Status bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
DIT 11		KI 1 Receiver I	nterrupt Flag S	Status dit			
	0 = Interrupt r	request has oc	t occurred				
bit 10	SPI1IF: SPI1	Event Interrup	ot Flag Status b	oit			
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 9	SPI1EIF: SPI	1 Fault Interru	pt Flag Status	bit			
	1 = Interrupt r	request has oc	curred				
h :t 0	0 = Interrupt r	request has no	t occurred				
DIT 8	1 3IF: Inmer3	Interrupt Flag	Status bit				
	0 = Interrupt r	request has oc	t occurred				
bit 7	T2IF: Timer2	Interrupt Flag	Status bit				
	1 = Interrupt r	request has oc	curred				
		request has no	t occurred		1.11		
bit 6	1 = Interrupt r	ut Compare Cr	annel 2 Interr	upt Flag Status	s dit		
	0 = Interrupt r	request has oc	t occurred				
bit 5	IC2IF: Input C	Capture Chann	el 2 Interrupt I	-lag Status bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred			- I- 14	
DIT 4	1 = Interrupt r	VIA Channel U		Complete Inte	rrupt Flag Statu	IS DIT	
	0 = Interrupt r	request has no	t occurred				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				

U-0	R/W-1	R/W-0	R/W-0	[]_0	R/W-1	R/W-0	R/W/-0
_		U2TXIP<2:0>		_		U2RXIP<2:0>	
bit 15					I		bit 8
L							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>				T5IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable k	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 15	Unimplome	ntod: Pood as '	,,				
bit 14_12			mitter Interru	int Priority hite			
	111 = Interr	rupt is priority 7 (h	highest priorit	ty interrupt)			
	•		- '	/			
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8	U2RXIP<2:	0>: UART2 Rece	iver Interrupt	Priority bits			
	111 = Interr	rupt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
h:+ 7	000 = Interr	upt source is disa	abled				
		entea: Read as 'C) unt 0 Drianiti	hita			
DIL 0-4	111 = lntorr	>: External Intern	upi z Priority viabest priorit	UIIS			
	•		iigiiest priorit	y menupi)			
	•						
	•	unt in priority 4					
	000 = Interr	upt is priority 1 upt source is disa	abled				
bit 3	Unimpleme	ented: Read as '0)'				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C2TXIP<2:0>		_		C1TXIP<2:0>	
bit 15					1		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA7IP<2:0>				DMA6IP<2:0>	
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable t	bit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	wn
bit 15	Unimpleme	ented: Read as '0	3				
bit 14-12	C2TXIP<2:	0>: ECAN2 Trans	mit Data Red	quest Interrupt	Priority bits		
	111 = Interi	rupt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Inter	rupt source is disa	abled				
bit 11	Unimpleme	ented: Read as '0	,				
bit 10-8	C1TXIP<2:	0>: ECAN1 Trans	mit Data Red	quest Interrupt	Priority bits		
	111 = Interi	rupt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Inter i	rupt source is disa	abled				
bit 7	Unimpleme	ented: Read as '0	,				
bit 6-4	DMA7IP<2:	:0>: DMA Channe	el 7 Data Trai	nsfer Complete	e Interrupt Price	ority bits	
	111 = Interi	rupt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is disa	abled				
bit 3	Unimpleme	ented: Read as '0	,				
bit 2-0	DMA6IP<2:	:0>: DMA Channe	el 6 Data Trai	nsfer Complete	e Interrupt Price	ority bits	
	111 = Interi	rupt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Inter i	rupt source is disa	abled				

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of "dsPIC33F/PIC24H Familv the Reference Manual", which is available site the from Microchip web (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24HJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-4: CIFCTRL: ECAN™ MODULE FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	DMABS<2:0>		—	—	—	_	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—		—			FSA<4:0>					
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
	DMABS DMABUTER SIZE DITS 111 = Reserved; do not use 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 010 = 6 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM									
Dit 12-5	Unimpleme	nted: Read as ()' 	- : 4 -						
טונ 4-ט	• • • • • • • • • • • • • •	B1 buffer B1 buffer B1 buffer B0 buffer	with Butter t	ວແຮ						

REGISTER 19-13: CIBUFPNT2: ECAN™ MODULE FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BF	P<3:0>			F6B	P<3:0>	
bit 15							bit 8
DAALO	DMU O	DMUO	D 444.0	DAM 0	D 444.0	DMUO	D 444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BF	><3:0>			F4B	P<3:0>	
bit /							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F7BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 7 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F6BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 6 Hits bits uffer 4			
	•						
	•						
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 7-4	F5BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte າ RX FIFO bເ າ RX Buffer 1	er 5 Hits bits ıffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F4BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 4 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 מ RX Buffer 0				

REGISTER 19-31: CITRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS

	(n = 0,	1,, 31)							
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	_	—	FILHIT<4:0>						
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—		—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					

bit 15-13 **Unimplemented:** Read as '0'

-n = Value at POR

'1' = Bit is set

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

'0' = Bit is cleared

bit 7-0 Unimplemented: Read as '0'

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	_	_	_	CH123	NB<1:0>	CH123SB		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	—	CH123	VA<1:0>	CH123SA		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable I	bit	U = Unimple	mented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 10-9 bit 8	 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 								
bit 7-3	Unimplemen	ted: Read as ')'		.				
bit 2-1	CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF-								
bit 0	CH123SA : C	hannel 1, 2, 3 F	Positive Input	Select for Sam	ple A bit				
	When AD12E 1 = CH1 posi 0 = CH1 posi	B = 1, CHxSA is tive input is AN tive input is AN	s: U-0, Unimp 3, CH2 positiv 0, CH2 positiv	plemented, Re ve input is AN4 ve input is AN1	a d as '0' , CH3 positive i , CH3 positive i	nput is AN5 nput is AN2			

REGISTER 20-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

FIGURE 24-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_		10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

AC CHA	ARACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μS	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	-	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μS	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	300	ns		
IS25	IS25 TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	—	
			400 kHz mode	100		ns		
			1 MHz mode ⁽¹⁾	100	_	ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μS	—	
			400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeate	
			400 kHz mode	0.6		μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first	
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25		μS		
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7		μS	_	
		Setup Time	400 kHz mode	0.6		μS		
			1 MHz mode ⁽¹⁾	0.6		μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns	_	
		Hold Time	400 kHz mode	600		ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_	
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	_	μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	_	μS		
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	—	

TABLE 24-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 25-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic	Min Typ Max Uni		Units	Conditions			
Reference Inputs									
HAD08	IREF	Current Drain	_	250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1		

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions			
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾									
AD23a	Gerr	Gain Error	_	5	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD24a	EOFF	Offset Error	_	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
	ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF- ⁽¹⁾									
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD24a	EOFF	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
Dynamic Performance (12-bit Mode) ⁽²⁾										
HAD33a	Fnyq	Input Signal Bandwidth	—		200	kHz	—			

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 25-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions			
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾									
AD23b	Gerr	Gain Error		3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD24b	EOFF	Offset Error	-	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
	ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF- ⁽¹⁾									
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD24b	EOFF	Offset Error	-	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
Dynamic Performance (10-bit Mode) ⁽²⁾										
HAD33b FNYQ		Input Signal Bandwidth	—	_	400	kHz	_			

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

NOTES:

NOTES:

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B