

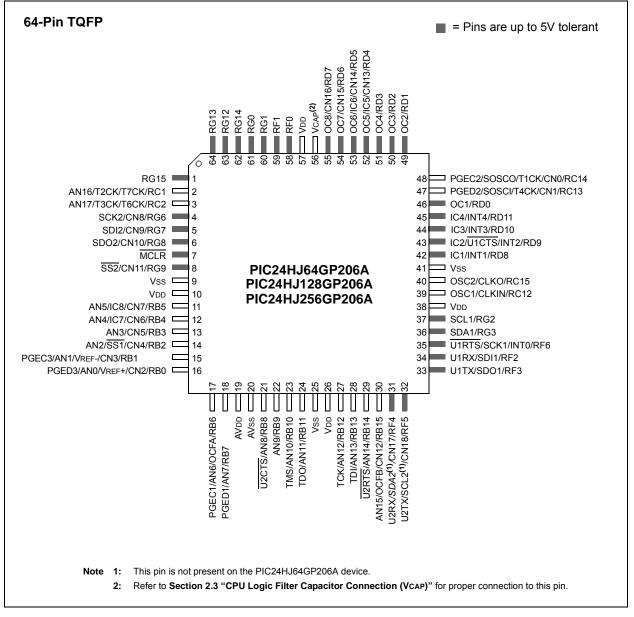
Welcome to E-XFL.COM

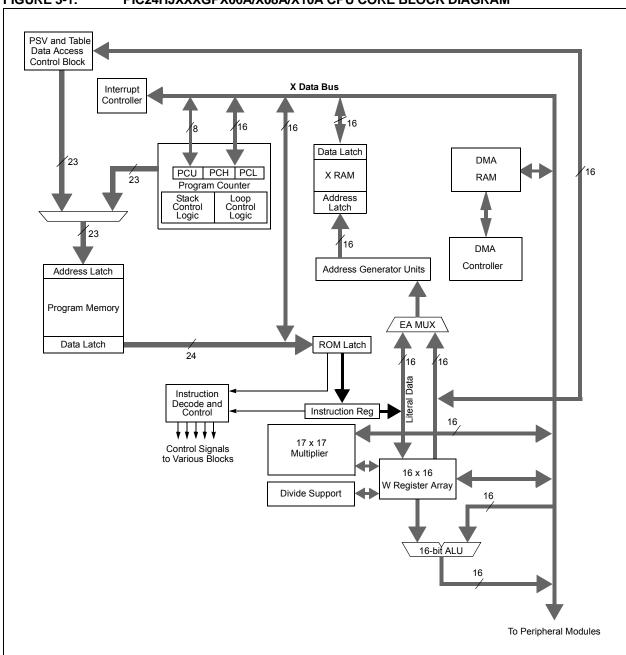
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp210at-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 3-1: PIC24HJXXXGPX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF1EID	0446		1	1	EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<'	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<'	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>				SID<2:0> — EXIDE —				EID<'	17:16>	xxxx		
C1RXF7EID	045E				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<'	17:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF9SID	0464				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C1RXF9EID	0466				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF10SID	0468				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx	
C1RXF10EID	046A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF12EID	0472				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF13EID	0476				EID<	:15:8>				EID<7:0>					xxxx			
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		-	EXIDE	—	EID<	17:16>	xxxx
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

ONILY (CONTINUED) DICOALLINNY ODEACA/E40A/C40A DEVICES

Legend:

© 2009-2012 Microchip Technology Inc.

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-34: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE INSTRUCTIONS

Move instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the Addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared between both source and destination (but typically only used by one).

In summary, the following Addressing modes are supported by move instructions:

- Register Direct
- · Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all	instructi	ons	suppo	ort	all	the
	Addressi	ng mo	des	give	n	ab	ove.
	Individua	l instru	ction	s ma	ay	sup	port
	different	subsets	of	these	Ado	dres	sing
	modes.						

4.3.4 OTHER INSTRUCTIONS

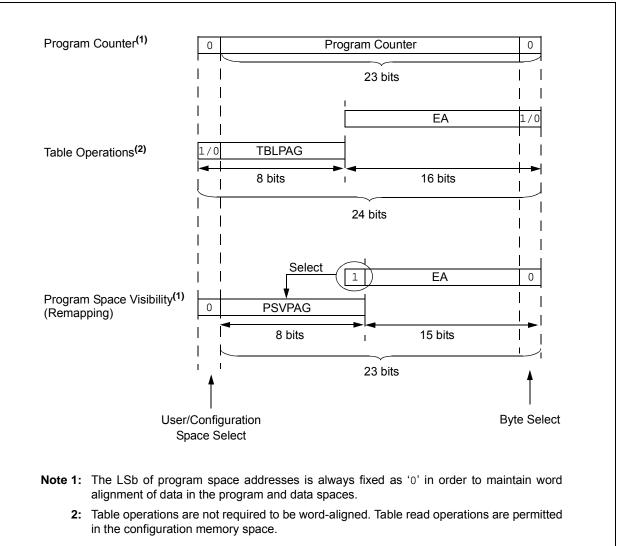
Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Interfacing Program and Data Memory Spaces

The PIC24HJXXXGPX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24HJXXXGPX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)


Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.4.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

FIGURE 4-6: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

ABLE 7-1	1 1	T VECTORS	1	1
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1: INTERRUPT VECTORS

	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_			_	_		
bit 15	-						bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	_
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7 bit 6 bit 5	1 = Interrupt r 0 = Interrupt r C1TXIF: ECA 1 = Interrupt r 0 = Interrupt r DMA7IF: DM	request has occ request has not N1 Transmit D request has occ request has not A Channel 7 Da	curred occurred ata Request I curred occurred	nterrupt Flag S nterrupt Flag S Complete Interru	tatus bit	s bit	
		request has occ request has not					
	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r	request has not	: occurred ata Transfer C curred	Complete Interr	upt Flag Statu	s bit	
bit 4	0 = Interrupt r DMA6IF: DM 1 = Interrupt r 0 = Interrupt r	equest has not A Channel 6 Da equest has occ	coccurred ata Transfer C curred coccurred	Complete Interr	upt Flag Statu	s bit	
	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r 0 = Interrupt r Unimplemen U2EIF: UART 1 = Interrupt r	request has not A Channel 6 Da request has occ request has not	coccurred ata Transfer C curred coccurred o' ot Flag Status curred		upt Flag Statu	s bit	
bit 4 bit 3	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r 0 = Interrupt r Unimplemen U2EIF: UART 1 = Interrupt r 0 = Interrupt r U1EIF: UART 1 = Interrupt r	equest has not A Channel 6 Da equest has occ equest has not ted: Read as '0 2 Error Interrup equest has occ	coccurred ata Transfer C curred coccurred of Flag Status curred coccurred of Flag Status curred	bit	upt Flag Statu	s bit	

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

bit 2	C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	SPI2EIE: SPI2 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

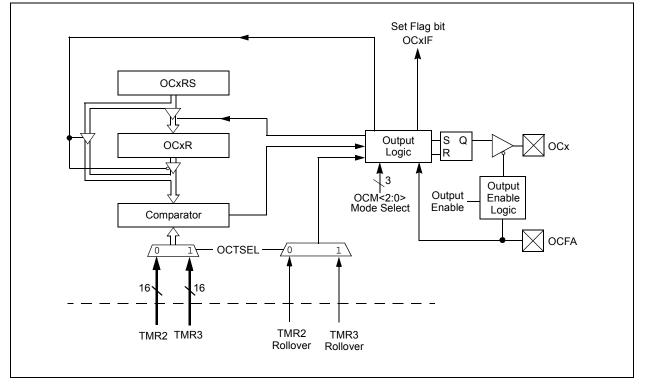
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		IC5IP<2:0>		—		IC4IP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	N/W-1	IC3IP<2:0>	FX/VV-0		N/W-1	DMA3IP<2:0>	N/ VV-U					
bit 7							bit 0					
Legend:	- h:4		.:4		waa mata al hiit waa							
R = Readable -n = Value at		W = Writable k '1' = Bit is set	JIL	0 = Onimple 0' = Bit is cle	mented bit, rea	x = Bit is unkn	own					
	TOR				arcu		lowin					
bit 15	Unimpleme	nted: Read as '0)'									
bit 14-12	IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits											
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)								
	•											
	•											
		upt is priority 1 upt source is disa	abled									
bit 11		nted: Read as '0										
bit 10-8	IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
		upt is priority 1	a la d									
bit 7		upt source is disa nted: Read as '0										
bit 6-4	-	Input Capture C		errunt Priority h	nite							
		upt is priority 7 (h										
	•		5 1	5 17								
	•											
	001 = Interr	upt is priority 1										
		upt source is disa										
bit 3	-	nted: Read as '0				10 L 10 L						
bit 2-0		0>: DMA Channe upt is priority 7 (h		-	e Interrupt Pric	ority bits						
	•		lighest phon	iy interrupt)								
	•											
	•											
	001 = Interr	upt is priority 1										

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 2	 XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected

15.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 13. "Output Compare" (DS70209), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

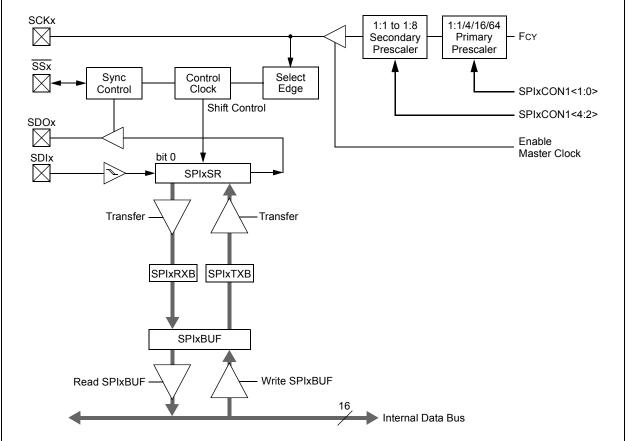
The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 18. "Serial Peripheral Interface (SPI)" (DS70206), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

© 2009-2012 Microchip Technology Inc.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

REGISTER 19-14: CIBUFPNT3: ECAN™ MODULE FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BF	°<3:0>			F10B	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	<3:0>			F8BF	P<3:0>	
bit 7							bit (
Legend:							
R = Readable		W = Writable		U = Unimpleme			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unk	nown
bit 15-12	1111 = Filter	: RX Buffer Wri hits received ir hits received ir	n RX FIFO bi	uffer			
	•						
		hits received ir hits received ir					
bit 11-8	1111 = Filter	: RX Buffer Wri hits received ir hits received ir	n RX FIFO bi	uffer			
	•						
	•						
	•						
		hits received ir hits received ir					
bit 7-4	1111 = Filter	RX Buffer Writt hits received in hits received in	n RX FIFO bi	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 3-0	F8BP<3:0>: 1111 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filten RX FIFO be	er 8 Hits bits uffer			
	•						
	•						
	0001 = Filter 0000 = Filter	hits received in					

Bit Field	Register	RTSP Effect	Description
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment
			Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
			Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
			(FOR 64K DEVICES) x11 = No Secure program Flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard Security; general program Flash segment starts at End of SS, ends at EOM 0x = High Security; general program Flash segment starts at End of ESS, ends at EOM
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected

TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

21.5 JTAG Interface

PIC24HJXXXGPX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

Note: For further information, refer to the dsPIC33F/PIC24H Family Reference Manual", Section 24. "Programming and Diagnostics" (DS70207), which is available from the Microchip web site (www.microchip.com).

21.6 Code Protection and CodeGuard[™] Security

The PIC24H product families offer advanced implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual PIC24H implemented. The following sections provide an overview these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: For further information, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 23. "CodeGuard™ Security" (DS70239), which is available from the Microchip web site (www.microchip.com).

21.7 In-Circuit Serial Programming Programming Capability

PIC24HJXXXGPX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) document for details about ICSP programming capability.

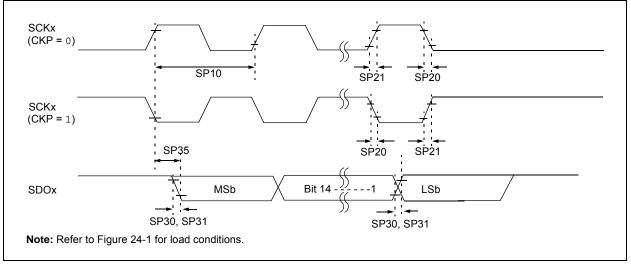
Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

21.8 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:


- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

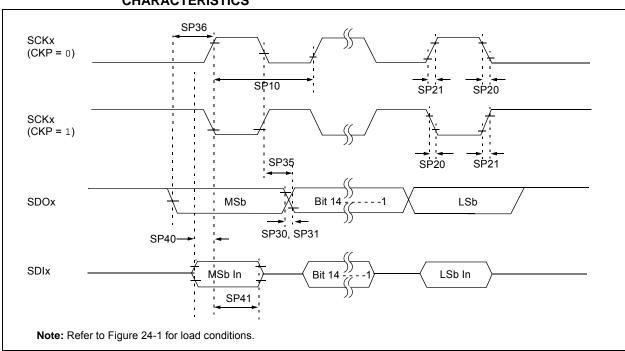

To use the in-circuit debugger function of the device, the design must implement ICSP programming capability connections to MCLR, VDD, VSS and the PGEDx/ PGECx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Transmit Only Transmit/Receive		Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 24-29		—	0,1	0,1	0,1	
10 MHz	—	Table 24-30	—	1	0,1	1	
10 MHz	—	Table 24-31	—	0	0,1	1	
15 MHz	—	—	Table 24-32	1	0	0	
11 MHz	—	—	Table 24-33	1	1	0	
15 MHz	_	_	Table 24-34	0	1	0	
11 MHz			Table 24-35	0	0	0	

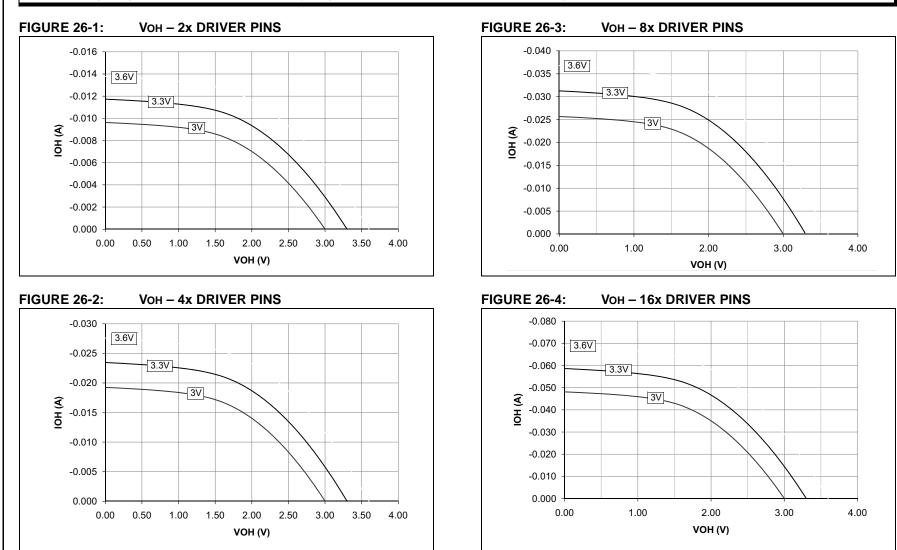
FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 24-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	_	10	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—

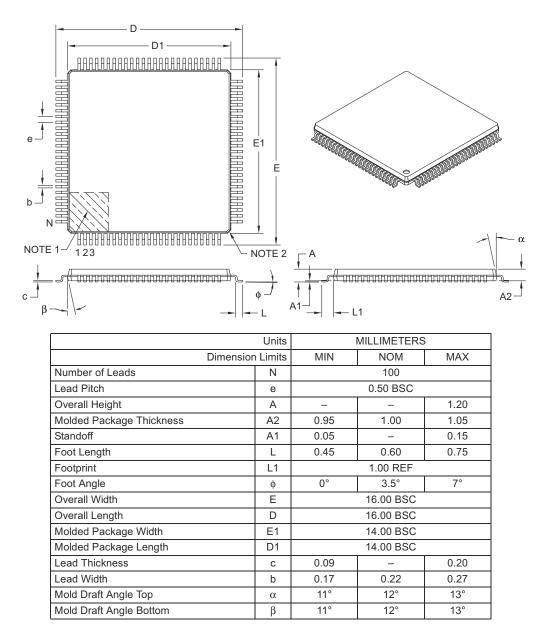
Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

NOTES:

26.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS


Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC24HJXXXGPX06A/X08A/X10A

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B