

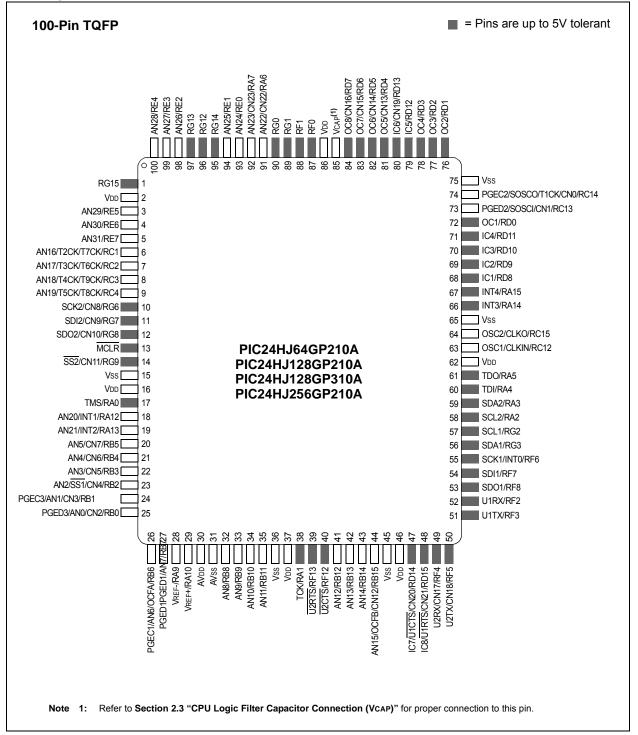
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp306a-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-24: PORTA REGISTER MAP⁽¹⁾

							-	-			-							
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	TRISA13	TRISA12	—	TRISA10	TRISA9	-	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	F6FF
PORTA	02C2	RA15	RA14	RA13	RA12	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	LATA13	LATA12	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	06C0	ODCA15	ODCA14	_	_		_	_	-			ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-25: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-26: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	—	_	_	_		TRISC4	TRISC3	TRISC2	TRISC1	—	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	—	_	_	_	_	—	RC4	RC3	RC2	RC1	—	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	-	LATC4	LATC3	LATC2	LATC1	—	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0		
—	—	DMA5IF	—	—	—	—	C2IF		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF		
bit 7							bit 0		
F									
Legend:									
R = Readable		W = Writable		-	nented bit, reac				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
		tod. Dood oo (0'						
bit 15-14 bit 13	-	ted: Read as '		omploto Intorr	unt Elog Statua	hit			
DIL 13	DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred								
		equest has not							
bit 12-9	Unimplemen	ted: Read as '	0'						
bit 8	C2IF: ECAN2 Event Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 7	C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit								
	 I = Interrupt request has occurred Interrupt request has not occurred 								
bit 6	•	nal Interrupt 4		t					
		equest has oc	•	•					
		equest has no							
bit 5	INT3IF: Exter	nal Interrupt 3	Flag Status bi	t					
		equest has oc							
1.11.4	-	equest has not							
bit 4		Interrupt Flag Street							
		equest has occorrequest has not							
bit 3	-	Interrupt Flag							
	1 = Interrupt r	equest has oc	curred						
	0 = Interrupt r	equest has not	occurred						
bit 2		2 Master Even	=	ag Status bit					
		equest has oc							
bit 1	-	equest has not 2 Slave Events		Statua hit					
bit 1		equest has oc		J Status Dit					
		equest has not							
bit 0		Interrupt Flag							
	1 = Interrupt r	equest has oc	curred						
	0 = Interrupt r	equest has not	occurred						

REGISTER 7-10: IE	EC0: INTERRUPT ENABLE CONTROL REGISTER 0
-------------------	--

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit 8
	.	D 444 0	DAA (a)	D 444 0	D 444 0	DAVA	D 444 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE bit 7	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	-	ted: Read as					
bit 14				Complete Interr	rupt Enable bit		
		request enable request not en					
bit 13	•	•		rupt Enable bit			
		request enable					
	-	request not en					
bit 12		RT1 Transmitte		able bit			
	•	request enable request not en					
bit 11	-	RT1 Receiver I		le bit			
		request enable	•				
	0 = Interrupt r	request not en	abled				
bit 10		Event Interrup					
		request enable request not en					
bit 9	-	1 Error Interru					
bit o		request enable	•				
	0 = Interrupt r	request not en	abled				
bit 8		Interrupt Enab					
		request enable request not en					
bit 7	•	Interrupt Enab					
bit i		request enable					
		request not en					
bit 6	OC2IE: Outpu	ut Compare Cl	nannel 2 Interr	upt Enable bit			
		request enable					
hit E	•	request not en		Enabla bit			
bit 5	-	Capture Chanr request enable					
	•	request not en					
bit 4	DMA0IE: DM	A Channel 0 E	ata Transfer (Complete Interr	upt Enable bit		
		request enable					
	0 = Interrupt r	request not en	abled				
1.11.0	•	•					
bit 3	T1IE: Timer1	Interrupt Enab	ole bit				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T2IP<2:0>		_		OC2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC2IP<2:0>		-		DMA0IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as 'o)'				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
L:1 44		upt source is disa					
bit 11	-	ented: Read as '(Latorrupt Drig	ritu hita		
bit 10-8		: Output Compa upt is priority 7 (I		-	ity bits		
	•		lightest phon	ty interrupt)			
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	IC2IP<2:0>:	: Input Capture C	hannel 2 Inte	errupt Priority b	oits		
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					
bit 3	-	ented: Read as '0					
bit 2-0		0>: DMA Channe			e Interrupt Pric	ority bits	
	111 = Interr •	upt is priority 7 (h	lignest priori	ty interrupt)			
	•						
	•	and in and the d					
		upt is priority 1 upt source is disa	ahled				

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—		C2IP<2:0>	
bit 7							bit 0
Logond:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as '0'
----------	----------------------------

- C2IP<2:0>: ECAN2 Event Interrupt Priority bits
 - 111 = Interrupt is priority 7 (highest priority interrupt)
 - •

bit 2-0

- •
- 001 = Interrupt is priority 1
- 000 = Interrupt source is disabled

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_		—	—	_
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		DMA5IP<2:0>			—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemer	ted: Read as '	0'				
bit 6-4	DMA5IP<2:0	>: DMA Chann	el 5 Data Tra	nsfer Complete	Interrupt Priorit	y bits	
	111 = Interru	pt is priority 7 (highest priorit	y interrupt)			
	•						

001 = Interrupt is priority 1 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C2TXIP<2:0>		—		C1TXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA7IP<2:0>		—		DMA6IP<2:0>	
bit 7							bit
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as 'd)'				
bit 14-12	-	>: ECAN2 Trans		quest Interrupt	Priority bits		
		ipt is priority 7 (ł					
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is disa	abled				
bit 11	Unimplemer	nted: Read as 'd)'				
bit 10-8	C1TXIP<2:0	>: ECAN1 Trans	smit Data Rec	quest Interrupt	Priority bits		
	111 = Interru	ipt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	• 001 = Interru	pt is priority 1					
		ipt source is disa	abled				
bit 7	Unimplemer	nted: Read as '0)'				
bit 6-4	DMA7IP<2:0	>: DMA Channe	el 7 Data Trar	nsfer Complete	e Interrupt Pric	ority bits	
	111 = Interru	ıpt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	• 001 = Interru	pt is priority 1					
		ipt source is disa	abled				
bit 3		nted: Read as '0					
bit 2-0	DMA6IP<2:0	>: DMA Channe	el 6 Data Trar	nsfer Complete	e Interrupt Pric	ority bits	
		ipt is priority 7 (h		•		5	
	•						
	•						
	• 001 = Interru	unt in priority 1					

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of "dsPIC33F/PIC24H Familv the Reference Manual", which is available site the from Microchip web (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- · Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24HJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	_	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽¹⁾	TCKPS	<1:0>(1)	—	—	TCS ^(1,3)	—
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Starts	nery On bit ⁽¹⁾ s 16-bit Timery		
	•	s 16-bit Timery		
bit 14	•	mented: Read as '0'		
bit 13		top in Idle Mode bit ⁽²⁾		
		ontinue module operation wh nue module operation in Idle		
bit 12-7	Unimple	mented: Read as '0'		
bit 6	TGATE:	Timery Gated Time Accumul	ation Enable bit ⁽¹⁾	
		s ignored.		
bit 5-4	TCKPS< 11 = 1:25 10 = 1:64 01 = 1:8 00 = 1:1		escale Select bits ⁽¹⁾	
bit 3-2	Unimple	mented: Read as '0'		
bit 1	TCS: Tim	nery Clock Source Select bit ⁽	1,3)	
		nal clock from pin TyCK (on nal clock (Fcy)	the rising edge)	
bit 0	Unimple	mented: Read as '0'		
Note 1:		peration is enabled (T2CON- set through T2CON.	<3> = 1), these bits have no ef	ffect on Timery operation; all time

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL		—	—	—	—
bit 15			•				bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7			•				bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in hardware only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Compare x
	0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	Hardware set or clear when Start, Repeated Start or Stop detected. R_W: Read/Write Information bit (when operating as I ² C slave) 1 = Read – indicates data transfer is output from slave
	0 = Write - indicates data transfer is input to slaveHardware set or clear after reception of I2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—	_	—		DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
67	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
68	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
69	ULNK	ULNK		Unlink Frame Pointer	1	1	None
70	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
71	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

23.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

23.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

23.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

23.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

23.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

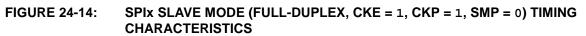

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility


TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACI	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Units Conditions				
Power-Down	Current (IPD) ⁽	1)						
DC60d	50	200	μA	-40°C				
DC60a	50	200	μA	+25°C	2.01/	Base Power-Down Current ⁽³⁾		
DC60b	200	500	μA	+85°C	3.3V	Base Power-Down Currents?		
DC60c	600	1000	μA	+125°C				
DC61d	8	13	μA	-40°C				
DC61a	10	15	μA	+25°C	2.21/	Watabdag Timor Current: Alwor(3)		
DC61b	12	20	μA	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾		
DC61c	13	25	μΑ	+125°C				

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled, all peripheral modules except the ADC are disabled (PMDx bits are all '1's). The following ADC settings are enabled for each ADC module (ADCx) prior to executing the PWRSAV instruction: ADON = 1, VCFG = 1, AD12B = 1 and ADxMD = 0.
- VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- RTCC is disabled.
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

AC CHA		STICS	(unless	d Operati otherwise g tempera	e stated) ature -4	ł0°C ≤ Ta	bV to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур ⁽²⁾	Max.	Units	Conditions
		Clock	Paramete	ers ⁽¹⁾			
AD50	Tad	ADC Clock Period	117.6			ns	_
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—
		Con	version R	ate			
AD55	tCONV	Conversion Time		14 Tad		ns	_
AD56	FCNV	Throughput Rate	_		500	ksps	_
AD57	TSAMP	Sample Time	3 Tad			_	_
	•	Timir	g Parame	ters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad		Auto convert trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 TAD	—	3.0 Tad		_
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	_	_	_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_		20	μS	_

TABLE 24-42: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

CHARAG	AC CTERISTICS	Standard Operating Condition Operating temperature -40°C		•			-
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	Clock Parameters						
HAD50	TAD	ADC Clock Period ⁽¹⁾	147			ns	—
		Con	version R	ate			
		001					

TABLE 25-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Condition Operating temperature -40°C					ed)
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		Cloc	k Parame	ters			
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_		ns	_
		Con	version F	late			
HAD56	FCNV	Throughput Rate ⁽¹⁾			800	Ksps	_

Note 1: These parameters are characterized but not tested in manufacturing.

APPENDIX B: REVISION HISTORY

Revision A (April 2009)

This is the initial released version of the document.

Revision B (October 2009)

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-1:MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added information on high temperature operation (see "Operating Range: ").
Section 10.0 "Power-Saving Features"	Updated the last paragraph to clarify the number of cycles that occur prior to the start of instruction execution (see Section 10.2.2 "Idle Mode").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADCx block diagram (see Figure 20-1).
Section 21.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 21.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 21-1).
Section 24.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 24-7).
	Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 24-36).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 24-12).
	Updated the Internal LPRC Accuracy parameters (see Table 24-18 and Table 24-19).
	Updated the ADC Module Specifications (12-bit Mode) parameters AD23a and AD24a (see Table 24-40).
	Updated the ADC Module Specifications (10-bit Mode) parameters AD23b and AD24b (see Table 24-41).
Section 25.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.

F

•
Flash Program Memory59
Control Registers60
Operations60
Programming Algorithm62
RTSP Operation60
Table Instructions59
Flexible Configuration
FSCM
Delay for Crystal and PLL Clock Sources
Device Resets
н
High Temperature Electrical Characteristics
I/O Ports
Parallel I/O (PIO)141
Write/Read Timing
l ² C
Operating Modes
Registers
I ² C Module
I2C1 Register Map
I2C2 Register Map
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Registers
Input Change Notification Module
Instruction Addressing Modes
File Register Instructions
Fundamental Modes Supported
MCU Instructions
Move and Accumulator Instructions
Other Instructions
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Internal RC Oscillator
Use with WDT
Internet Address
Interrupt Control and Status Registers
IECx
IFSx
INTCON1
INTCON2
INTTREG
IPCx
Interrupt Setup Procedures
Initialization
Interrupt Disable
Interrupt Disable
Trap Service Routine
Interrupt Vector Table (IVT)
Interrupts Coincident with Power Save Instructions
interrupto confedent with rower dave instructions
J
JTAG Boundary Scan Interface
· · · · · · · · · · · · · · · · · · ·

Μ

Memory Organization
Modes of Operation
Disable
Initialization
Listen All Messages 181
Listen Only 181
Loopback 181
Normal Operation 181
MPLAB ASM30 Assembler, Linker, Librarian 238
MPLAB Integrated Development
Environment Software 237
MPLAB PM3 Device Programmer 240
MPLAB REAL ICE In-Circuit Emulator System
MPLINK Object Linker/MPLIB Object Librarian 238
Multi-Bit Data Shifter 28
Ν
NVM Module
Register Map52
0
Open-Drain Configuration
Output Compare 155
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD)
Pinout I/O Descriptions (table)
PMD Module
Register Map
POR and Long Oscillator Start-up Times
PORTA
Register Map
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 70 Register Map 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 51
Register Map50PORTB50Register Map50PORTC50PORTD8Register Map50PORTE50PORTE51PORTF71Register Map51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 70 Register Map 51 PORTF 71 Register Map 51 PORTG 51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Register Map51PORTG71Register Map51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE50Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD50Register Map50PORTE51Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB60Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 50 PORTE 50 PORTE 51 PORTG 51 PORTG 51 Power-Saving Features 133 Clock Frequency and Switching 133 Program Address Space 29 Construction 55 Data Access from Program Memory Using 58 Program Space Visibility 58 Data Access from Program Memory Using Table Instructions Using Table Instructions 57 Data Access from, Address Generation 56 Memory Map 29
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using Program Space Visibility58Data Access from Program Memory Using Table Instructions57Data Access from, Address Generation56Memory Map29Table Read Instructions29
Register Map50PORTBRegister MapRegister Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF8Register Map51PORTG51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDH57TBLRDL57
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE7Register Map51PORTF7Register Map51PORTG7Register Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using57Data Access from Program Memory29Table Read Instructions57TBLRDH57TBLRDH57Visibility Operation58Program Memory133Interrupt Vector30
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58