

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp306a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

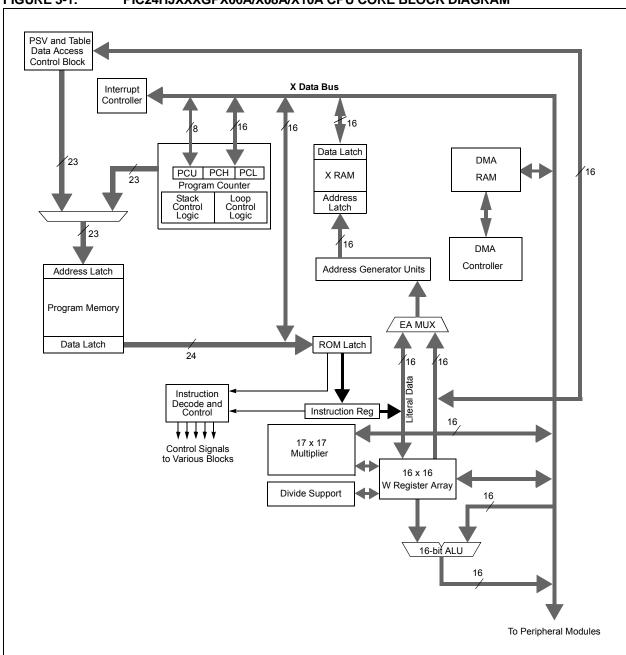
Getting started with the PIC24HJXXXGPX06A/X08A/X10A family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors") VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

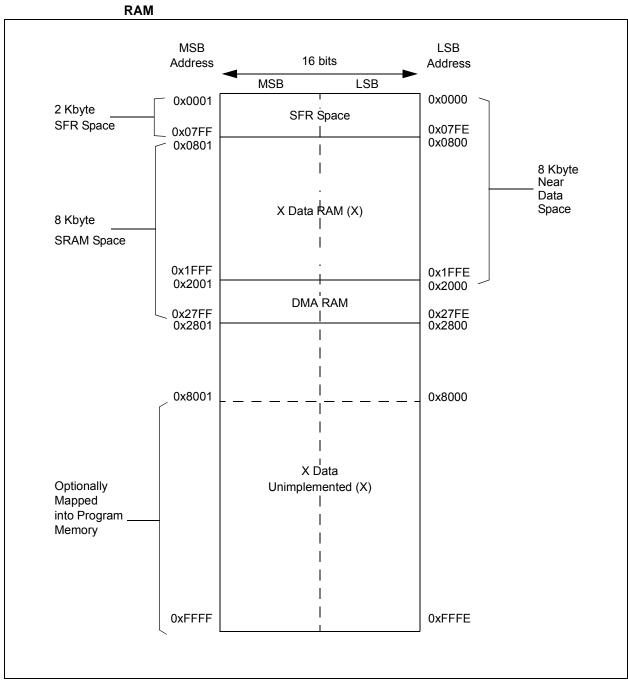
(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented


Note:	The	AVdd	and	AVss	pins	mu	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	rence				

2.2 Decoupling Capacitors


The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 3-1: PIC24HJXXXGPX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A DEVICES WITH 8 KB

R/W-	0 R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
TRAP	R IOPUWR	—	—	—	—	—	VREGS ⁽³⁾	
bit 15	·						bit	
R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
EXTR		SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR	
bit 7							bit	
Legend:								
R = Read	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
bit 15	1 = A Trap Co	Reset Flag bit onflict Reset ha onflict Reset ha	s occurred	d				
bit 14	1 = An illega Address	l opcode deter Pointer caused	ction, an ille a Reset	W Access Rese gal address mo Reset has not oo	ode or uninitiali	zed W regist	er used as a	
bit 13-9	Unimplemen	ted: Read as 'o)'					
bit 8	1 = Voltage R	age Regulator S egulator is acti egulator goes i	ve during Sle		еер			
bit 7	1 = A Master	al Reset (MCL Clear (pin) Res Clear (pin) Res	et has occur					
bit 6	1 = A reset	re Reset (Instru instruction has instruction has	been execut	ed				
bit 5	SWDTEN: So 1 = WDT is en 0 = WDT is di		Disable of W	DT bit ⁽²⁾				
bit 4	1 = WDT time	hdog Timer Tim e-out has occur e-out has not oc	red	it				
bit 3	SLEEP: Wake 1 = Device ha	e-up from Sleep as been in Slee as not been in S	o Flag bit p mode					
bit 2	IDLE: Wake-u 1 = Device wa	up from Idle Fla as in Idle mode as not in Idle m	g bit					
bit 1	1 = A Brown-	out Reset Flag out Reset has c out Reset has r	occurred					
bit 0	POR: Power- 1 = A Power-	on Reset Flag I on Reset has o on Reset has n	bit ccurred					
Note 1:	All of the Reset sta cause a device Re	-	set or cleare	ed in software. S	Setting one of the	ese bits in soff	tware does no	
2:	If the FWDTEN Co SWDTEN bit settin	ig.		-	-	-		
3:	For PIC24HJ256G	PX06A/X08A/X	(10A devices	, this bit is unim	plemented and	reads back p	rogrammed	

3: For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

7.3 Interrupt Control and Status Registers

PIC24HJXXXGPX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VEC-NUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	OR	'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as	0'				
bit 14	DMA1IF: DM	A Channel 1 D	ata Transfer C	Complete Interr	rupt Flag Status	bit	
		request has oc					
bit 13		request has no I Conversion C		unt Elog Statu	o hit		
DIL 13		request has oc	•	upi riay Sialu			
		request has no					
bit 12	U1TXIF: UAF	RT1 Transmitte	r Interrupt Flag	g Status bit			
		request has oc					
		request has no					
bit 11		RT1 Receiver I request has oc		Status Dit			
		request has oc					
bit 10	-	Event Interrup		bit			
		request has oc					
		request has no					
bit 9		1 Fault Interru	•	bit			
		request has oc request has no					
bit 8		Interrupt Flag					
		request has oc					
	-	request has no					
bit 7		Interrupt Flag					
		request has oc request has no					
bit 6		ut Compare Ch		upt Flag Status	s bit		
		request has oc		-p · · · · · · · · · · · · · · · · · · ·			
	0 = Interrupt i	request has no	t occurred				
bit 5	-	Capture Chann	•	-lag Status bit			
		request has oc request has no					
bit 4	-	-		Complete Inte	rrupt Flag Statu	ıs bit	
		request has oc					
		request has no					
bit 3		Interrupt Flag					
		request has oc					
	0 = interrupt i	request has no	coccurred				

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C1IP<2:0>		—		C1RXIP<2:0>	
bit 15							bit 8
		R/W-0	R/W-0	U-0		R/W-0	
U-0	R/W-1	SPI2IP<2:0>	R/W-U	0-0	R/W-1	SPI2EIP<2:0>	R/W-0
 bit 7		51 1211 ~2.02		_		51 12L11 ~2.02	bit
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	Unimpleme	ented: Read as ')'				
bit 14-12	-	ECAN1 Event In		ty bits			
		rupt is priority 7 (ł	=	-			
	•						
	•						
	001 = Intern	rupt is priority 1					
		rupt source is disa	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8		0>: ECAN1 Rece			iority bits		
	111 = Interr	rupt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is disa	abled				
bit 7	Unimpleme	ented: Read as 'o)'				
bit 6-4	SPI2IP<2:0	>: SPI2 Event Inf	errupt Priorit	y bits			
	111 = Interr	rupt is priority 7 (I	nighest priorif	y interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is disa	abled				
bit 3	Unimpleme	ented: Read as 'o)'				
bit 2-0	SPI2EIP<2:	:0>: SPI2 Error In	terrupt Priori	ty bits			
	111 = Interr	rupt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					

NOTES:

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STA	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STA	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_		_	—	_		_		
bit 15							bit		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	— — TUN<5:0> ⁽¹⁾								
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-6	Unimplemen	ted: Read as '	0'						
bit 15-6 bit 5-0	•	ted: Read as ' RC Oscillator T							
	TUN<5:0>: F		uning bits ⁽¹⁾	345 MHz)					
	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾	345 MHz)					
	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾	345 MHz)					
	TUN<5:0>: F 111111 = Ce • •	RC Oscillator T nter frequency	⁻ uning bits ⁽¹⁾ – 0.375% (7.	·					
	TUN<5:0>: F 111111 = Ce 100001 = Ce	RC Oscillator T	- 0.375% (7. – 11.625% (6	.52 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce • • 100001 = Ce 100000 = Ce 011111 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8	.52 MHz) MHz) .23 MHz)					
	TUN<5:0>: F 111111 = Ce 100001 = Ce 100000 = Ce 011111 = Ce 011110 = Ce	RC Oscillator T nter frequency nter frequency nter frequency nter frequency	- 0.375% (7. - 11.625% (6 - 12% (6.49 + 11.625% (8 + 11.25% (8.1	.52 MHz) MHz) .23 MHz) 20 MHz)					

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽²⁾

- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.
 - 2: This register is reset only on a Power-on Reset (POR).

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	Hardware set or clear when Start, Repeated Start or Stop detected. R_W: Read/Write Information bit (when operating as I ² C slave) 1 = Read – indicates data transfer is output from slave
	0 = Write - indicates data transfer is input to slaveHardware set or clear after reception of I2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 19-31: CITRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS

	(n = 0,	1,, 31)						
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—	FILHIT<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
			-	—	—	—		
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		

bit 15-13 **Unimplemented:** Read as '0'

-n = Value at POR

'1' = Bit is set

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

'0' = Bit is cleared

bit 7-0 Unimplemented: Read as '0'

x = Bit is unknown

Base Assembly # of # of Status Flags Instr Assembly Syntax Description Mnemonic Words Cycles Affected # 47 Relative Call RCALL RCALL 1 2 None Expr RCALL Computed Call 1 2 None Wn 48 REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None REPEAT Repeat Next Instruction (Wn) + 1 times 1 1 None Wn 1 1 49 RESET RESET Software device Reset None 50 RETFIE RETFIE Return from interrupt 1 3 (2) None 51 RETLW #lit10,Wn Return with literal in Wn 1 3 (2) None RETLW 52 1 RETURN RETURN Return from Subroutine 3 (2) None 53 RLC RLC f = Rotate Left through Carry f 1 1 C,N,Z f RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z 54 f = Rotate Left (No Carry) f 1 1 N,Z RLNC RUNC f 1 RLNC f,WREG WREG = Rotate Left (No Carry) f 1 N,Z RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z 55 RRC RRC f = Rotate Right through Carry f 1 1 C,N,Z f WREG = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG RRC Wd = Rotate Right through Carry Ws 1 1 C,N,Z Ws,Wd 56 RRNC RRNC f = Rotate Right (No Carry) f 1 1 N,Z f WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG Wd = Rotate Right (No Carry) Ws 1 1 N,Z RRNC Ws,Wd 1 C,N,Z 57 SE SE Ws,Wnd Wnd = sign-extended Ws 1 58 SETM SETM f f = 0xFFFF1 1 None WREG = 0xFFFF 1 1 SETM WREG None Ws = 0xFFFF 1 SETM Ws 1 None 59 SL SL f f = Left Shift f 1 1 C,N,OV,Z SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z Wd = Left Shift Ws 1 1 C,N,OV,Z SL Ws,Wd Wnd = Left Shift Wb by Wns 1 1 SL N.Z Wb, Wns, Wnd SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z 60 SUB SUB f = f – WREG 1 1 C,DC,N,OV,Z f WREG = f - WREG 1 1 C,DC,N,OV,Z SUB f,WREG Wn = Wn - lit10SUB #lit10,Wn 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb - Ws1 1 C,DC,N,OV,Z Wd = Wb - lit5 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd 61 SUBB $f = f - WREG - (\overline{C})$ C,DC,N,OV,Z 1 1 SUBB f WREG = $f - WREG - (\overline{C})$ 1 SUBB f,WREG 1 C,DC,N,OV,Z $Wn = Wn - lit10 - (\overline{C})$ 1 C,DC,N,OV,Z 1 SUBB #lit10,Wn SUBB $Wd = Wb - Ws - (\overline{C})$ 1 1 C,DC,N,OV,Z Wb,Ws,Wd SUBB Wb,#lit5,Wd $Wd = Wb - lit5 - (\overline{C})$ 1 1 C,DC,N,OV,Z 62 SUBR f = WREG - f 1 1 C,DC,N,OV,Z SUBR f WREG = WREG - f 1 1 C,DC,N,OV,Z SUBR f,WREG SUBR Wb,Ws,Wd Wd = Ws - Wb 1 1 C,DC,N,OV,Z Wd = lit5 - Wb1 1 C,DC,N,OV,Z SUBR Wb, #lit5, Wd 63 SUBBR $f = WREG - f - (\overline{C})$ 1 1 C,DC,N,OV,Z SUBBR f WREG = WREG - f - (\overline{C}) 1 SUBBR f,WREG 1 C,DC,N,OV,Z $Wd = Ws - Wb - (\overline{C})$ 1 1 C,DC,N,OV,Z SUBBR Wb.Ws.Wd $Wd = lit5 - Wb - (\overline{C})$ 1 C,DC,N,OV,Z SUBBR Wb,#lit5,Wd 1 64 1 SWAP SWAP.b Wn Wn = nibble swap Wn 1 None SWAP Wn = byte swap Wn 1 1 None Wn 1 2 65 Read Prog<23:16> to Wd<7:0> TBLRDH TBLRDH Ws,Wd None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Inde $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended (unless otherwise stated) (unless otherwise stated) (unless otherwise stated) (Derived the states) (Derived the states) (Derived the states) (Derived the states) (Derived the states) (Unless otherwise states) (Unless otherwise states) (Unless otherwise states) (Unless otherwise states) (Derived the states) <th>≤ +85°C for Industrial</th>					≤ +85°C for Industrial					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	its Conditions						
Power-Down Current (IPD) ⁽¹⁾										
DC60d	50	200	μA	-40°C						
DC60a	50	200	μA	+25°C	2.01/	Base Power-Down Current ⁽³⁾				
DC60b	200	500	μΑ	+85°C	3.3V	Base Power-Down Currents?				
DC60c	600	1000	μΑ	+125°C						
DC61d	8	13	μA	-40°C						
DC61a	10	15	μA	+25°C	2.21/	Watabdag Timor Current: Alwor(3)				
DC61b	12	20	μA	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾				
DC61c	13	25	μΑ	+125°C						

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled, all peripheral modules except the ADC are disabled (PMDx bits are all '1's). The following ADC settings are enabled for each ADC module (ADCx) prior to executing the PWRSAV instruction: ADON = 1, VCFG = 1, AD12B = 1 and ADxMD = 0.
- VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- RTCC is disabled.
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	(unles	ard Operatin s otherwise ting tempera	stated) ture -4	40°C ≤ ⊺	3.0V to 3.6V TA \leq +85°C for Industrial A \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Conditions	
SY10	ТмсL	MCLR Pulse Width (low)	2	_		μS	-40°C to +85°C
SY11	Tpwrt	Power-up Timer Period	_	2 4 8 16 32 64 128	_	ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	_
SY20	Twdt1	Watchdog Timer Time-out Period	—	_	—	—	See Section 21.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 24-19)
SY30	Тоѕт	Oscillator Start-up Timer Period	—	1024 Tosc		—	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μS	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 24-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Op (unless othe Operating ter	rwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

AC CH	ARACTE	RISTICS	Standard O (unless oth Operating te	erwise	ture -40°C	≤ Ta≤	to 3.6V +85°C for Industrial 125°C for Extended
Param No.	Symbo I	Characteristic	Min.	Тур	Max.	Units	Conditions
			Device	Supply	/		
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V	—
			Referen	ce Inpu	ts		
AD05	Vrefh	Reference Voltage High	AVss + 2.5		AVdd	V	
AD05a			3.0		3.6	V	Vrefh = AVdd Vrefl = AVss = 0
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 2.5	V	
AD06a			0		0	V	VREFH = AVDD VREFL = AVSS = 0
AD07	VREF	Absolute Reference Voltage	2.5		3.6	V	VREF = VREFH - VREFL
AD08	IREF	Current Drain	_		10	μA	ADC off
AD08a	IAD	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 1 12-bit ADC mode, See Note 1
			Analo	g Input			
AD12	VINH	Input Voltage Range VINH	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input
AD13	VINL	Input Voltage Range VINL	VREFL	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input
AD17	Rin	Recommended Imped- ance of Analog Voltage Source	_		200 200	Ω Ω	10-bit ADC 12-bit ADC

TABLE 24-39: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

NOTES:

F

•
Flash Program Memory59
Control Registers60
Operations60
Programming Algorithm62
RTSP Operation60
Table Instructions59
Flexible Configuration
FSCM
Delay for Crystal and PLL Clock Sources
Device Resets
н
High Temperature Electrical Characteristics
I/O Ports
Parallel I/O (PIO)141
Write/Read Timing
l ² C
Operating Modes
Registers
I ² C Module
I2C1 Register Map
I2C2 Register Map
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Registers
Input Change Notification Module
Instruction Addressing Modes
File Register Instructions
Fundamental Modes Supported
MCU Instructions
Move and Accumulator Instructions
Other Instructions
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Internal RC Oscillator
Use with WDT
Internet Address
Interrupt Control and Status Registers
IECx
IFSx
INTCON1
INTCON2
INTTREG
IPCx
Interrupt Setup Procedures
Initialization
Interrupt Disable
Interrupt Disable
Trap Service Routine
Interrupt Vector Table (IVT)
Interrupts Coincident with Power Save Instructions
interrupto confedent with rower dave instructions
J
JTAG Boundary Scan Interface
· · · · · · · · · · · · · · · · · · ·

Μ

Memory Organization
Modes of Operation
Disable
Initialization
Listen All Messages 181
Listen Only 181
Loopback 181
Normal Operation 181
MPLAB ASM30 Assembler, Linker, Librarian 238
MPLAB Integrated Development
Environment Software 237
MPLAB PM3 Device Programmer 240
MPLAB REAL ICE In-Circuit Emulator System
MPLINK Object Linker/MPLIB Object Librarian 238
Multi-Bit Data Shifter 28
Ν
NVM Module
Register Map52
0
Open-Drain Configuration
Output Compare 155
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD)
Pinout I/O Descriptions (table)
PMD Module
Register Map
POR and Long Oscillator Start-up Times
PORTA
Register Map
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 70 Register Map 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 51
Register Map50PORTB50Register Map50PORTC50PORTD8Register Map50PORTE50PORTE51PORTF71Register Map51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 51 PORTG 51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Register Map51PORTG71Register Map51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE50Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD50Register Map50PORTE51Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB60Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 50 PORTE 50 PORTE 51 PORTG 51 PORTG 51 Power-Saving Features 133 Clock Frequency and Switching 133 Program Address Space 29 Construction 55 Data Access from Program Memory Using 58 Program Space Visibility 58 Data Access from Program Memory Using Table Instructions Using Table Instructions 57 Data Access from, Address Generation 56 Memory Map 29
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using Program Space Visibility58Data Access from Program Memory Using Table Instructions57Data Access from, Address Generation56Memory Map29Table Read Instructions29
Register Map50PORTBRegister MapRegister Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF8Register Map51PORTG51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using Program Space Visibility58Data Access from Program Memory Using Table Instructions57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDH57TBLRDH57
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE7Register Map51PORTF7Register Map51PORTG7Register Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using7Data Access from Program Memory29Table Read Instructions57TBLRDH57TBLRDH57Visibility Operation58Program Memory133Interrupt Vector30
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11