

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp310a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

TABLE 4-17: DMA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	-	AMOD	E<1:0>	-	—	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	_	—	—	—	—	_	_	—			I	RQSEL<6:0	>			0000
DMA0STA	0384								S	STA<15:0>								0000
DMA0STB	0386								S	STB<15:0>								0000
DMA0PAD	0388								F	PAD<15:0>								0000
DMA0CNT	038A	_	—	—	_	—						CN	<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW			—	—	_	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	—	—	_	—			—	—			I	RQSEL<6:0	>			0000
DMA1STA	0390								S	STA<15:0>								0000
DMA1STB	0392								S	STB<15:0>								0000
DMA1PAD	0394								F	PAD<15:0>								0000
DMA1CNT	0396	_	—	—	_	—						CN	<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW			—	—	_	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	—	—	_	—			—	—			I	RQSEL<6:0	>			0000
DMA2STA	039C								S	STA<15:0>								0000
DMA2STB	039E								S	STB<15:0>								0000
DMA2PAD	03A0								F	PAD<15:0>								0000
DMA2CNT	03A2	—	—	—	—	—	—					CN	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	—	_	—	—	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	—	—	—	—	—	_	—	—			I	RQSEL<6:0	>			0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								S	STB<15:0>								0000
DMA3PAD	03AC								F	PAD<15:0>								0000
DMA3CNT	03AE	—	_	—	_	—						CN	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW			—	—	_	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	—	—	_	—			—	—			I	RQSEL<6:0	>			0000
DMA4STA	03B4								S	STA<15:0>								0000
DMA4STB	03B6								S	STB<15:0>								0000
DMA4PAD	03B8								F	PAD<15:0>								0000
DMA4CNT	03BA	_	—	—	_	—						CN	<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	—	—	—	_	—	—	—	_				RQSEL<6:0	>			0000
DMA5STA	03C0								S	STA<15:0>								0000
DMA5STB	03C2								S	STB<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

REGISTER 7-6:	IFS1: INTERRUPT FLAG STATUS REGISTER 1
---------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF
bit 15							bit 8
							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	U2TXIF: UAF	RT2 Transmitter	Interrupt Fla	g Status bit			
	1 = Interrupt i	request has occ	curred				
	0 = Interrupt i	request has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver Ir	nterrupt Flag	Status bit			
	1 = Interrupt i	request has occ request has not	currea t occurred				
bit 13	INT2IF: Exter	nal Interrupt 2	Flag Status b	it			
	1 = Interrupt I	request has occ	curred				
	0 = Interrupt I	request has not	toccurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt I	request has occ request has not	curred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
	1 = Interrupt I	request has occ	curred				
	0 = Interrupt i	request has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred t occurred				
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Statu	s bit		
	1 = Interrupt I	request has occ	curred				
h # 0		request has not	t occurred	Complete Inte	must Flag. Otati	a hit	
DIL 8	1 = Interrunt u	via Unannei 2 L request has occ		Complete inte	errupt Flag Statu	IS DIL	
	0 = Interrupt i	request has not	toccurred				
bit 7	IC8IF: Input C	Capture Channe	el 8 Interrupt	Flag Status bit			
	1 = Interrupt i	request has occ	curred				
hit 6		Capture Chappe	occurred	Elaa Status bit			
DIL O	1 = Interrupt i	request has occ	curred	riay Status Dit			
	0 = Interrupt i	request has not	toccurred				
bit 5	AD2IF: ADC2	2 Conversion C	omplete Inter	rupt Flag Statu	ıs bit		
	1 = Interrupt I	request has occ	curred				
hit 4		request has not		:+			
UIL 4		request has one	riay status D curred	IL			
	0 = Interrupt i	request has not	occurred				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
		_	_	_	_	_	_					
bit 15					•	•	bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0					
C2TXIF	C1TXIF	DMA7IF	DMA6IF		U2EIF	U1EIF						
bit 7					•		bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15-8	Unimplemen	ted: Read as '	0'									
bit 7	C2TXIF: ECA	N2 Transmit D	ata Request I	nterrupt Flag S	Status bit							
	1 = Interrupt r	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred											
bit 6	C1TXIF: ECA	C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit										
	1 = Interrupt request has occurred											
		request has not	t occurred									
bit 5	DMA7IF: DM	DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit										
	\perp = Interrupt request has occurred 0 = Interrupt request has not occurred											
hit 4		A Channel 6 D	ata Transfer (Complete Interr	unt Flag Status	hit						
bit 4	1 = Interrupt request has occurred											
	0 = Interrupt request has not occurred											
bit 3	Unimplemen	ted: Read as '	0'									
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	bit								
	1 = Interrupt r	1 = Interrupt request has occurred										
	0 = Interrupt r	request has not	t occurred									
bit 1	U1EIF: UART	1 Error Interru	pt Flag Status	bit								
	1 = Interrupt r	request has occ	curred									
	0 = Interrupt r	request has not	t occurred									
bit 0	Unimplemen	ted: Read as '	0'									

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS

EXAMPLE

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: PIC24HJXXXGPX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	-
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

NOTES:

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽²⁾
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - •
 - •
 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽²⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - **2:** Do not set both Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ADRC	—	—			SAMC<4:0>	1)						
bit 15	·						bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			ADCS<	:7:0> (2)								
bit 7							bit (
Legend:												
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
		o · o										
bit 15	ADRC: ADC Conversion Clock Source bit											
	1 = ADC internal RC clock											
hit 14-13		ited: Read as '(, ,									
bit 12_8		Auto Sample T	ime hite(1)									
511 12-0	3AmO<4.0>. Auto Sample Time bits''' $11111 = 31 Tap$											
	•											
	•											
	•											
	00001 = 1 IA	VD										
hit 7 0		Analog to Digit		Cleak Salaat b	.:+ ₂ (2)							
DIL 7-0	ADCS<7:0>: Analog-to-Digital Conversion Clock Select bits ⁽²⁾											
	11111111 = Reserved											
	•											
	•											
	• $1000000 = \text{Peserved}$											
	$0111111 = \text{Tcy} \cdot (\text{ADCS} < 7:0 > + 1) = 64 \cdot \text{Tcy} = \text{Tad}$											
	•	Υ.	,									
	•											
	•											
	00000010 =	TCY · (ADCS<7	′:0> + 1) = 3 ·	Tcy = Tad								
	0000001 =	TCY · (ADCS<7	':0> + 1) = 2 ·	TCY = TAD								
	00000000 =	ICY · (ADCS<7	r:∪> + 1) = 1 ·	ICY = TAD								
Note 1: Thi	is bit only used	if ADxCON1<7 [.]	5> (SSRC<2))>) = 111								
0. Th	ie bit ie net voor		$(\Delta D P C) =$	- , <u>-</u>								

REGISTER 20-3: ADxCON3: ADCx CONTROL REGISTER 3

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment
			Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0x0007FE 010 = High security; boot program Flash segment starts at End of VS, ends at 0x0007FE
			Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE 001 = High security; boot program Flash segment starts at End of VS, ends at 0x001FFE
			Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x003FFE 000 = High security; boot program Flash segment starts at End of VS, ends at 0x003FFE
RBS<1:0>	FBS	Immediate	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Immediate	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 21-2: CONFIGURATION BITS DESCRIPTION

23.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

23.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

23.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.1 DC Characteristics

Characteristic	VDD Range	Temp Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06A/X08A/X1		
—	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40		
_	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40		

TABLE 24-1: OPERATING MIPS VS. VOLTAGE

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11 for the minimum and maximum BOR values.

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+150	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	Pint + Pi/o			W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40	—	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θja	40	—	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θја	28	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			Standard Operating	Operating temperati	g Conditio ure -40° -40°	C ≤ TA ≤ C ≤ TA ≤ C ≤ TA ≤ ·	to 3.6V +85°C f +125°C f	(unless otherwise stated) for Industrial for Extended
Param No.	Symbol	Characteris	stic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range ⁽²⁾		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	_
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitte)	-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base or communication clocks used by peripherals use the formula:

Peripheral Clock Jitter = DCLK / $\sqrt{(Fosc/Peripheral bit rate clock)}$

Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz

SPI SCK Jitter = [DCLK / \(\lambda(80 MHz/5 MHz))] = [3\(\lambda / 16] = [3\(\lambda / 4] = 0.75\)

TABLE 24-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standar Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min	Тур	Max	Units	s Conditions			
	Internal FRC Accuracy @	0 7.3728	MHz ⁽¹⁾						
F20a	FRC	-2		+2	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F20b	FRC	-5		+5	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 24-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 32.768 kHz ⁽¹⁾								
F21a	LPRC	-30	-	+30	%	$-40^\circ C \le T A \le +85^\circ C$	—		
F21b	LPRC	-35	—	+35	%	$-40^\circ C \le T A \le +125^\circ C$			

Note 1: Change of LPRC frequency as VDD changes.

25.1 High Temperature DC Characteristics

TABLE 25-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temperature Range	Max MIPS	
Characteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06A/X08A/X10A	
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11 for the minimum and maximum BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit					
High Temperature Devices										
Operating Junction Temperature Range	TJ	-40	—	+155	°C					
Operating Ambient Temperature Range	TA	-40	—	+150	°C					
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma ({VDD - VOH} x IOH) + \Sigma (VOL x IOL)$	PD	I	W							
Maximum Allowed Power Dissipation	PDMAX	(W							

TABLE 25-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No.	Symbol	Characteristic	Min	Conditions						
Operating V	Voltage									
HDC10	Supply Voltage									
	Vdd		3.0 3.3 3.6 V -40°C to +150°C							

TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARAG	CTERISTICS		Standard O (unless oth Operating to	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Parameter No.	Typical	Мах	Units	Conditions				
Power-Dow	n Current (IPD)							
HDC60e	250	2000	μA	+150°C 3.3V Base Power-Down Current ^(1,3)				
Note 1: Base IPD is measured with all perinherals and clocks shut down. All I/Os are configured as inputs and								

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

DC CHA	RACTERI	ISTICS	Standa (unles Operat	ard Ope s other ting tem	erating C wise sta	Conditio Ited) e -40°(ns: 3.0V to 3.6V C ≤ TA ≤ +85°C for High
				<u> </u>		Temp	perature
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL ≤ 1.8 mA, VDD = 3.3V See Note 1
HDO10 Vo	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IOL ≤ 3.6 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	Io∟ ≤ 6 mA, Voo = 3.3V See Note 1
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	IoL ≥ -1.8 mA, VDD = 3.3V See Note 1
HDO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	Io∟ ≥ -3 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins:	1.5	—	—		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_		V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1
			3.0	_	_		$\label{eq:IOH} \begin{array}{l} \text{IOH} \geq -1.4 \text{ mA, VDD} = 3.3 \text{V} \\ \text{See Note 1} \end{array}$
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_			IOH ≥ -3.9 mA, VDD = 3.3V See Note 1
HDO20A	Voн1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	—	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 8x Source Driver Pins - OSC2, CLKO,	1.5	_			IOH ≥ -7.5 mA, VDD = 3.3V See Note 1
		RC15	2.0	_		V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1
			3.0	—	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1

TABLE 25-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 25-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Co Operating temperature	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Characteristic Min Typ Max Units Conditions									
	LPRC @ 32.768 kHz ⁽¹⁾									
HF21	PRC $-70^{(2)}$ — $+70^{(2)}$ % $-40^{\circ}C \le T_A \le +150^{\circ}C$ —									

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 25-10: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

CHARAC	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28			ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	_	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

CHARAC	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_		
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11