

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp310at-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the PIC24HJ256GP610A product page on the Microchip web site (www.microchip.com) or by selecting a family reference manual section from the following list.

In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit[™] (I2C[™])" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The PIC24HJXXXGPX06A/X08A/X10A architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24HJXXXGPX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.4** "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24HJXXXGPX06A/X08A/ X10A family of devices are shown in Figure 4-1.

	PIC24HJ64XXXXXA	PIC24HJ128XXXXXA	PIC24HJ256XXXXXA	
Ā	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000
T	Reset Address	Reset Address	Reset Address	- 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FF
	Reserved	Reserved	Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
Space	User Program Flash Memory (22K instructions)	User Program	User Program	0x000200
ory S		(44K instructions)	(88K instructions)	UXUUACUU
Mem				0x0157FE
Jser	Unimplemented			00010000
	(Read '0's)	Unimplemented		
		(Read '0's)		0x02ABFE 0x02AC00
			Inimplemented	0,02,0000
			(Read (0'a)	
Ļ			(Read 0 S)	0
			+	0x800000
Space	Reserved	Reserved	Reserved	
nory	Device Configuration	Device Configuration	Device Configuration	0xF7FFFE 0xF80000
Mer	Registers	Registers	Registers	0xF80017 0xF80010
Configuration	Reserved	Reserved	Reserved	
	DEVID (2)	DEVID (2)	DEVID (2)	0xFEFFFE 0xFF0000

FIGURE 4-1: PROGRAM MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A FAMILY DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	BUF 0140 Input 1 Capture Register											xxxx						
IC1CON	0142	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144	Input 2 Capture Register									xxxx							
IC2CON	0146	_	—	ICSIDL	—	_	—	—	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3BUF	0148	8 Input 3 Capture Register								xxxx								
IC3CON	014A	ICSIDL ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>							0000									
IC4BUF	014C	Input 4 Capture Register									xxxx							
IC4CON	014E	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC5BUF	0150								Input 5 Ca	apture Regis	ter							xxxx
IC5CON	0152	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC6BUF	0154								Input 6 Ca	apture Regis	ter							xxxx
IC6CON	0156	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	apture Regis	ter							xxxx
IC7CON	015A	ICSIDL ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>							0000									
IC8BUF	015C								Input 8 Ca	apture Regis	ter							xxxx
IC8CON	015E	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000

C24HJXXXGPX06A/X08A/X10A

TABLE 4-7: INPUT CAPTURE REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

IADLE 4-2	TABLE 4-23. ECANZ REGISTER MAP WHEN C2CTRET.WIN = 1 FOR FIC24H3230GF010A DEVICES ONET (CONTINUED)																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11EID	056E				EID<	15:8>				EID<7:0>						xxxx		
C2RXF12SID	0570				SID<	10:3>					SID<2:0> — EXIDE —			—	EID<1	7:16>	xxxx	
C2RXF12EID	0572	EID<15:8>						EID<7:0>					xxxx					
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C2RXF13EID	0576				EID<	15:8>				EID<7:0>						xxxx		
C2RXF14SID	0578				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16					7:16>	xxxx		
C2RXF14EID	057A	EID<15:8>					EID<7:0>						xxxx					
C2RXF15SID	057C		SID<10:3>				SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx					
C2RXF15EID	057E		EID<15:8>									EID<7	/:0>				xxxx	

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610A DEVICES ONLY (CONTINUED)

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

DS70592D-page 49

REGIST	ER 6-1: RCO	N: RESET COI		GISTER ⁽¹⁾			
R/W-	-0 R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAF	PR IOPUWR		—			_	VREGS ⁽³⁾
bit 15	·						bit 8
R/M	0 R/W-0	R/M-0	R/\/_0	R/\/_0	R/\\/_0	R/M/-1	R/M-1
FXT	R SWR					BOR	POR
bit 7		OWBTEN	WBIO	OLLLI	IDEE	Bort	bit 0
Legend:			L :4			l = = (0)	
R = Read			DIT		mented dit, read		
-n = valu	e at POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unk	nown
bit 15	TRAPR: Tra	ap Reset Flag bit					
	$1 = A \operatorname{Trap} ($	Conflict Reset ha	s occurred	ما			
L:1 4 4		Jonflict Reset na	s not occurre	a M A	-4 [] 1:4		
DIC 14	1 = An illect	al opcode of	ction, an ille	vv Access Res dal address m	ode or uninitial	lized W registe	er used as an
	Addres	s Pointer caused	a Reset	ga: aaa.ccc			
	0 = An illeg	al opcode or uni	nitialized W F	Reset has not o	ccurred		
bit 13-9	Unimpleme	ented: Read as '	כ'	(2)			
bit 8	VREGS: Vo	Itage Regulator	Standby Durii	ng Sleep bit ⁽³⁾			
	\perp = Voltage	Regulator is acti Regulator goes i	nto standby i	ep mode mode durina SI	een		
bit 7	EXTR: Exte	rnal Reset (MCL	\overline{R}) Pin bit		000		
	1 = A Maste	er Clear (pin) Res	set has occur	red			
	0 = A Maste	er Clear (pin) Res	set has not or	ccurred			
bit 6	SWR: Softw	are Reset (Instru	uction) Flag b	oit .			
	1 = A RESE	r instruction has	not been exe	ed Souted			
bit 5	SWDTEN: S	Software Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is	enabled					
	0 = WDT is	disabled					
bit 4	WDTO: Wat	tchdog Timer Tim	ne-out Flag b	it			
	1 = WD1 tin 0 = WDT tin	ne-out has occur	red				
hit 3	SI FFP: Wa	ke-un from Slee	n Flag hit				
	1 = Device h	has been in Slee	p mode				
	0 = Device ł	has not been in S	Sleep mode				
bit 2	IDLE: Wake	-up from Idle Fla	ıg bit				
	1 = Device	was in Idle mode	ode				
bit 1	BOR: Brown	n-out Reset Flag	bit				
	1 = A Brown	n-out Reset has o	occurred				
	0 = A Browr	n-out Reset has r	not occurred				
bit 0	POR: Powe	r-on Reset Flag	bit				
	1 = A Power0 = A Power	r-on Reset has o r-on Reset has n	ccurred				
		I-OII Reset has h					
Note 1:	All of the Reset s	tatus bits may be	set or cleare	ed in software.	Setting one of th	iese bits in soft	ware does not
	cause a device R	Reset.					
2:	If the FWDTEN C	Configuration bit i	is '1' (unprog	rammed), the V	NDT is always e	enabled, regard	lless of the
٦.	For PIC24H.1256		(10A devices	this bit is unin	nplemented and	l reads back or	ogrammed

3: For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INT0IF
bit 7							bit 0
Logond							
R = Readable	bit	W = Writable	bit	l I = l Inimplei	mented hit read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkn	iown
			-				-
bit 15	Unimplemen	ted: Read as	0'				
bit 14	DMA1IF: DM	A Channel 1 D	ata Transfer C	Complete Interr	rupt Flag Status	bit	
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 13	AD1IF: ADC1	Conversion C	Complete Interi	rupt Flag Statu	is bit		
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 12	U1TXIF: UAR	RT1 Transmitte	r Interrupt Flag	g Status bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
DIT 11		KI 1 Receiver I	nterrupt Flag S	Status dit			
	0 = Interrupt r	request has oc	t occurred				
bit 10	SPI1IF: SPI1	Event Interrup	ot Flag Status b	oit			
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 9	SPI1EIF: SPI	1 Fault Interru	pt Flag Status	bit			
	1 = Interrupt r	request has oc	curred				
h :t 0	0 = Interrupt r	request has no	t occurred				
DIT 8	1 3IF: Inmer3	Interrupt Flag	Status bit				
	0 = Interrupt r	request has oc	t occurred				
bit 7	T2IF: Timer2	Interrupt Flag	Status bit				
	1 = Interrupt r	request has oc	curred				
		request has no	t occurred		1.11		
bit 6	1 = Interrupt r	ut Compare Cr	annel 2 Interr	upt Flag Status	s dit		
	0 = Interrupt r	request has oc	t occurred				
bit 5	IC2IF: Input C	Capture Chann	el 2 Interrupt I	-lag Status bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred			- I- 14	
DIT 4	1 = Interrupt r	VIA Channel U		Complete Inte	rrupt Flag Statu	IS DI	
	0 = Interrupt r	request has no	t occurred				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 3	CNIF: Input Change Notification Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 19-13: CIBUFPNT2: ECAN™ MODULE FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BF	P<3:0>			F6B	P<3:0>	
bit 15							bit 8
DAALO	DMU O	DMUO	D 444.0	DAM 0	D 444.0	DMUO	D 444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BF	><3:0>			F4B	P<3:0>	
bit /							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F7BP<3:0>: 1111 = Filte 1110 = Filte •	: RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 7 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F6BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 6 Hits bits uffer 4			
	•						
	•						
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 7-4	F5BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte າ RX FIFO bເ າ RX Buffer 1	er 5 Hits bits ıffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F4BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 4 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 מ RX Buffer 0				

REGISTER 19-26: CiTRmnCON: ECAN[™] MODULE TX/RX BUFFER m CONTROL REGISTER (m = 0.2.4.6: n = 1.3.5.7)

	(11 – 0,2	2, 4 ,0, 11 = 1,3,	5,1)				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>
bit 15							bit 8

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	See Definition for Bits 7-0, Controls Buffer n
bit 7	TXENm: TX/RX Buffer Selection bit
	 1 = Buffer TRBn is a transmit buffer 0 = Buffer TRBn is a receive buffer
bit 6	TXABTm: Message Aborted bit ⁽¹⁾
	1 = Message was aborted0 = Message completed transmission successfully
bit 5	TXLARBm: Message Lost Arbitration bit ⁽¹⁾
	 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent
bit 4	TXERRm: Error Detected During Transmission bit ⁽¹⁾
	 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent
bit 3	TXREQm: Message Send Request bit
	Setting this bit to '1' requests sending a message. The bit will automatically clear when the message is successfully sent. Clearing the bit to '0' while set will request a message abort.
bit 2	RTRENm: Auto-Remote Transmit Enable bit
	 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected
bit 1-0	TXmPRI<1:0>: Message Transmission Priority bits
	 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority 00 = Lowest message priority

Note 1: This bit is cleared when TXREQ is set.

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2) (CONTINUED)

bit 4	Unimplemented: Read as '0'				
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)				
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>				
bit 2	ASAM: ADC Sample Auto-Start bit				
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set 				
bit 1	SAMP: ADC Sample Enable bit				
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion. 				
bit 0	DONE: ADC Conversion Status bit				
	 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when analog-to-digital conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion. 				

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	_	_	_	CH123	NB<1:0>	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123	VA<1:0>	CH123SA
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 10-9 bit 8	 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 						
bit 7-3	Unimplemen	ted: Read as '0)'				
bit 2-1	CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0' 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF-						N11 8
bit 0	CH123SA : C	hannel 1, 2, 3 F	ositive Input	Select for Sam	ple A bit		
	When AD12E 1 = CH1 posi 0 = CH1 posi	B = 1, CHxSA is tive input is AN tive input is AN	s: U-0, Unimp 3, CH2 positiv 0, CH2 positiv	plemented, Re re input is AN4 re input is AN1	ad as '0' , CH3 positive i , CH3 positive i	nput is AN5 nput is AN2	

REGISTER 20-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

REGISTER 20-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3,4)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PCFG<15:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: On devices with 2 analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
 - **3:** PCFGx = ANx, where x = 0 through 15.
 - 4: PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

21.4 Watchdog Timer (WDT)

For PIC24HJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TwDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 21-2: WDT BLOCK DIAGRAM

DC CHARACTERISTICS			Standard O (unless othe Operating te	perating Condition erwise stated) emperature -40°C -40°C	s: 3.0V to 3.6V ≤ TA ≤ +85°C for Ind ≤ TA ≤ +125°C for Ex	lustrial tended		
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units Conditions					
Idle Current (I	Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽¹⁾							
DC40d	3	25	mA	-40°C				
DC40a	3	25	mA	+25°C	7			
DC40b	3	25	mA	+85°C	3.3V	TO MIES		
DC40c	3	25	mA	+125°C				
DC41d	4	25	mA	-40°C		16 MIPS		
DC41a	5	25	mA	+25°C	3.3//			
DC41b	6	25	mA	+85°C	5.5V			
DC41c	6	25	mA	+125°C				
DC42d	8	25	mA	-40°C		20 MIPS		
DC42a	9	25	mA	+25°C	2.21/			
DC42b	10	25	mA	+85°C	5.5V			
DC42c	10	25	mA	+125°C				
DC43a	15	25	mA	+25°C				
DC43d	15	25	mA	-40°C	2.21/			
DC43b	15	25	mA	+85°C	3.3V	30 MIF 3		
DC43c	15	25	mA	+125°C				
DC44d	16	25	mA	-40°C				
DC44a	16	25	mA	+25°C	3 3\/			
DC44b	16	25	mA	+85°C	5.5 V	40 MIF 3		
DC44c	16	25	mA	+125°C				

TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- JTAG is disabled
- **2:** These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

DC CHARACTERISTICS			Standar (unless Operatin	d Opera otherwing tempe	ting Cone se stated erature -	ditions:) 40°C ≤ 40°C ≤	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No. Symbol Characteristic			Min	Typ ⁽¹⁾	Мах	Units	Conditions
DI60a	licl lich	Input Low Injection Current	0	_	_5 ^(5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11
D160b			0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾
DI60c	∑ ІІСТ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 24-13: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

APPENDIX B: REVISION HISTORY

Revision A (April 2009)

This is the initial released version of the document.

Revision B (October 2009)

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-1:MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added information on high temperature operation (see " Operating Range: ").
Section 10.0 "Power-Saving Features"	Updated the last paragraph to clarify the number of cycles that occur prior to the start of instruction execution (see Section 10.2.2 "Idle Mode").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADCx block diagram (see Figure 20-1).
Section 21.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 21.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 21-1).
Section 24.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 24-7).
	Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 24-36).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 24-12).
	Updated the Internal LPRC Accuracy parameters (see Table 24-18 and Table 24-19).
	Updated the ADC Module Specifications (12-bit Mode) parameters AD23a and AD24a (see Table 24-40).
	Updated the ADC Module Specifications (10-bit Mode) parameters AD23b and AD24b (see Table 24-41).
Section 25.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.