

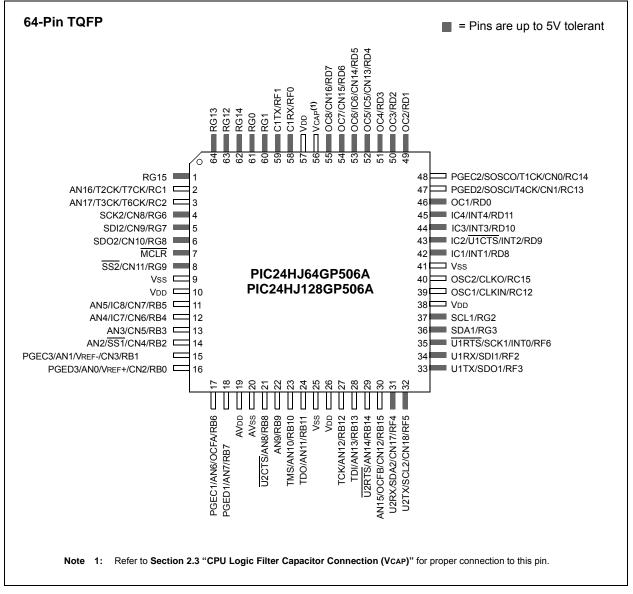
Welcome to E-XFL.COM

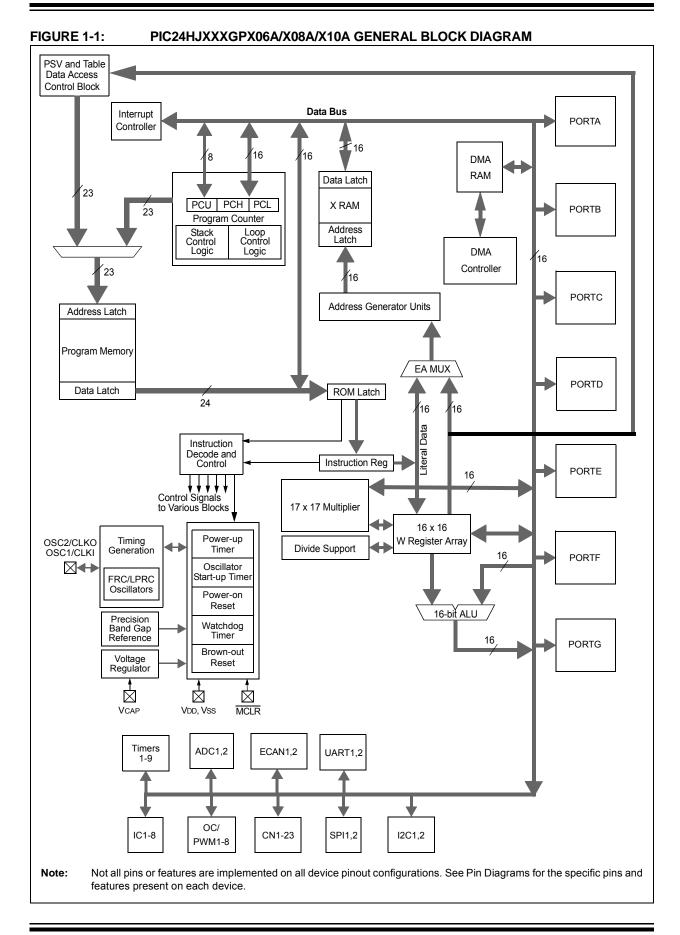
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp506a-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	OR	'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as	0'				
bit 14	DMA1IF: DM	A Channel 1 D	ata Transfer C	Complete Interr	rupt Flag Status	bit	
		request has oc					
bit 13		request has no I Conversion C		unt Elog Statu	o hit		
DIL 13		request has oc	•	upi riay Sialu			
		request has no					
bit 12	U1TXIF: UAF	RT1 Transmitte	r Interrupt Flag	g Status bit			
		request has oc					
		request has no					
bit 11		RT1 Receiver I request has oc		Status Dit			
		request has oc					
bit 10	-	Event Interrup		bit			
		request has oc					
		request has no					
bit 9		1 Fault Interru	•	bit			
		request has oc request has no					
bit 8		Interrupt Flag					
		request has oc					
	-	request has no					
bit 7		Interrupt Flag					
		request has oc request has no					
bit 6		ut Compare Ch		upt Flag Status	s bit		
		request has oc		-p · · · · · · · · · · · · · · · · · · ·			
	0 = Interrupt i	request has no	t occurred				
bit 5	-	Capture Chann	•	-lag Status bit			
		request has oc request has no					
bit 4	-	-		Complete Inte	rrupt Flag Statu	ıs bit	
		request has oc					
		request has no					
bit 3		Interrupt Flag					
		request has oc					
	0 = interrupt i	request has no	coccurred				

REGISTER 7-10: IE	EC0: INTERRUPT ENABLE CONTROL REGISTER 0
-------------------	--

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit 8
	.	D 444 0	DAA (a)	D 444 0	D 444 0	DAVA	D 444 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE bit 7	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	-	ted: Read as					
bit 14				Complete Interr	rupt Enable bit		
		request enable request not en					
bit 13	•	•		rupt Enable bit			
		request enable					
	-	request not en					
bit 12		RT1 Transmitte		able bit			
	•	request enable request not en					
bit 11	-	RT1 Receiver I		le bit			
		request enable	•				
	0 = Interrupt r	request not en	abled				
bit 10		Event Interrup					
		request enable request not en					
bit 9	-	1 Error Interru					
bit o		request enable	•				
	0 = Interrupt r	request not en	abled				
bit 8		Interrupt Enab					
		request enable request not en					
bit 7	•	Interrupt Enab					
bit i		request enable					
		request not en					
bit 6	OC2IE: Outpu	ut Compare Cl	nannel 2 Interr	upt Enable bit			
		request enable					
hit E	•	request not en		Enabla bit			
bit 5	-	Capture Chanr request enable					
		request not en					
bit 4	DMA0IE: DM	A Channel 0 E	ata Transfer (Complete Interr	upt Enable bit		
		request enable					
	0 = Interrupt r	request not en	abled				
1.11.0	•	•					
bit 3	T1IE: Timer1	Interrupt Enab	ole bit				

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T8IP<2:0>		_		MI2C2IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	10,00-1	SI2C2IP<2:0>	10,00-0			T7IP<2:0>	1000-0
bit 7		0120211 12:04				1111 -2.0-	bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	Timer8 Interrupt					
		rupt is priority 7 (-	y interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8		:0>: I2C2 Master		•	6		
	111 = Interi	rupt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 7		ented: Read as '					
bit 6-4	-	:0>: I2C2 Slave E		pt Priority bits			
		rupt is priority 7 (I		• •			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Inter i	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0		Timer7 Interrupt	-				
	111 = Interi	rupt is priority 7 (I	highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1	a la la al				
	000 = Interi	rupt source is dis	abled				

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				d as '0'		
-n = Value at P	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	= Bit is cleared x = Bit is unknown		nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—		—	CNT<	9:8> (2)
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> ⁽²⁾			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - 2: Number of DMA transfers = CNT<9:0> + 1.

bit 7

bit 0

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD		_	_	_
bit 15	- I		1				bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		—	—	—	—	I2C2MD	AD2MD ⁽¹⁾
bit 7							bit (
Logondi							
Legend: R = Readal	ble bit	W = Writable	hit	U = Unimplem	ented bit rea	ad as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
							-
bit 15	T9MD: Timer	9 Module Disab	ole bit				
	1 = Timer9 m	odule is disable	ed				
	0 = Timer9 m	odule is enable	d				
bit 14	T8MD: Timer	8 Module Disab	ole bit				
		odule is disable					
		odule is enable					
bit 13	T7MD: Timer	7 Module Disab	ole bit				
	-	odule is disable					
		odule is enable	-				
bit 12		6 Module Disat					
		odule is disable odule is enable					
bit 11-2		ted: Read as '					
bit 1	•	2 Module Disat					
		lule is disabled					
		lule is enabled					
bit 0		2 Module Disab	le bit ⁽¹⁾				
		ule is disabled					
	$0 = AD2 \mod$						

Note 1: The PCFGx bits will have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Timer1 also supports these features:

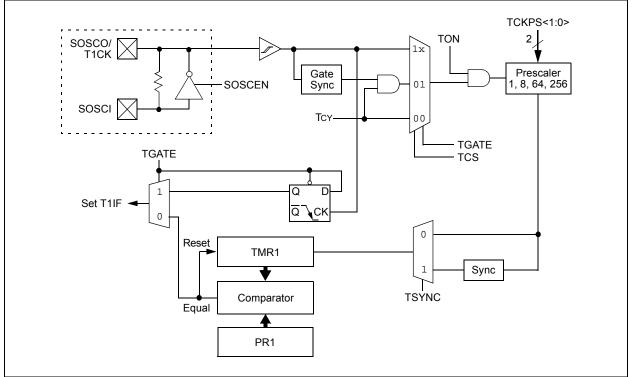

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0			
_	_	CSIDL	ABAT			REQOP<2:0>				
bit 15							bit			
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0			
	PMODE<2:0		0-0	CANCAP	0-0	0-0	WIN			
bit 7		12		CANCAI		_	bit			
Legend:		r = Bit is Res	erved							
R = Readable b	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimpleme	nted: Read as	0'							
bit 13	CSIDL: Sto	p in Idle Mode b	bit							
		•		levice enters Idl	e mode					
		e module opera								
bit 12		t All Pending Tr								
	•	Il transmit buffe will clear this bit		nsmission smissions are a	borted					
bit 11	Reserved: [
bit 10-8	REQOP<2:0>: Request Operation Mode bits									
	111 = Set Listen All Messages mode									
	110 = Rese	rved – do not us	se							
		rved – do not us	-							
		onfiguration mo								
		oopback mode	5							
		isable mode								
	000 = Set N	ormal Operation	n mode							
bit 7-5	OPMODE<2	2:0>: Operation	Mode bits							
		le is in Listen A	ll Messages n	node						
	110 = Rese 101 = Rese									
		le is in Configu	ation mode							
		le is in Listen O								
	010 = Modu	le is in Loopbac	k mode							
		le is in Disable le is in Normal		do.						
bit 4		nted: Read as	-							
bit 3	-			Capture Event	Enable bit					
	1 = Enable i	-		nessage receive						
bit 2-1		nted: Read as	0'							
bit 0	•	Map Window Se								
	1 = Use filte	-								

REGISTER 19-1: CiCTRL1: ECAN™ MODULE CONTROL REGISTER 1

REGISTER 19-31: CITRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS

	(n = 0,	1,, 31)					
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—			FILHIT<4:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			_	—	—	—	
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

bit 15-13 **Unimplemented:** Read as '0'

-n = Value at POR

'1' = Bit is set

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

'0' = Bit is cleared

bit 7-0 Unimplemented: Read as '0'

x = Bit is unknown

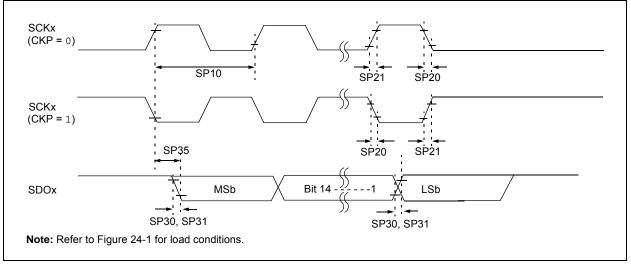
20.6 ADC Control Registers

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2)

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	ADDMABM		AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

Legend:	HC = Cleared by hardware	HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	ADON: ADC Operating Mode bit
	1 = ADC module is operating
	0 = ADC module is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer
	 DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-Bit or 12-Bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)
	00 = Integer (DOUT = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	111 = Internal counter ends sampling and starts conversion (auto-convert)110 = Reserved
	100 - Reserved
	100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion
	011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion
	001 = Active transition on INT0 pin ends sampling and starts conversion
	000 = Clearing sample bit ends sampling and starts conversion


Bit Field	Register	RTSP Effect	Description					
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled					
JTAGEN	FICD	Immediate	JTAG Enable bits 1 = JTAG enabled 0 = JTAG disabled					
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved					

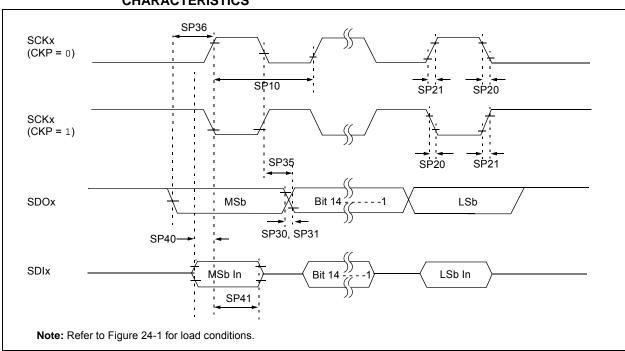

TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 24-29		—	0,1	0,1	0,1	
10 MHz	—	Table 24-30	—	1	0,1	1	
10 MHz	—	Table 24-31	—	0	0,1	1	
15 MHz	—	—	Table 24-32	1	0	0	
11 MHz	—	—	Table 24-33	1	1	0	
15 MHz	_	_	Table 24-34	0	1	0	
11 MHz			Table 24-35	0	0	0	

FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 24-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	īcs	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_	_	10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

25.1 High Temperature DC Characteristics

TABLE 25-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temperature Range	Max MIPS
Characteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06A/X08A/X10A
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11 for the minimum and maximum BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

TABLE 23-2. THERIMAL OPERATING CONDITIONS					
Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/θJA			W

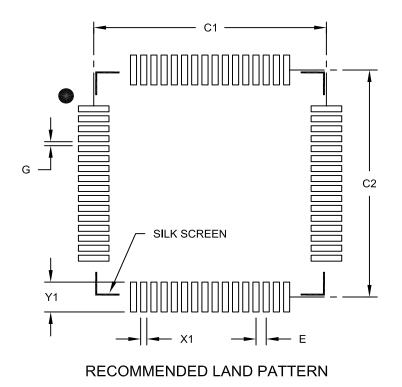
TABLE 25-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions						
Operating V	Voltage								
HDC10	Supply Vo	Supply Voltage							
	Vdd		3.0	3.3	3.6	V	-40°C to +150°C		

TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS (unless oth				perating Co erwise state emperature	ed))V to 3.6V ≤ +150°C for High Temperature	
Parameter No.	Typical	Мах	Units	Conditions			
Power-Down	Current (IPD)						
HDC60e	250	2000	μA	+150°C 3.3V Base Power-Down Current ^(1,3)			
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and							

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.


2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensio	on Limits	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

APPENDIX B: REVISION HISTORY

Revision A (April 2009)

This is the initial released version of the document.

Revision B (October 2009)

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-1:MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added information on high temperature operation (see "Operating Range: ").
Section 10.0 "Power-Saving Features"	Updated the last paragraph to clarify the number of cycles that occur prior to the start of instruction execution (see Section 10.2.2 "Idle Mode").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADCx block diagram (see Figure 20-1).
Section 21.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 21.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 21-1).
Section 24.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 24-7).
	Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 24-36).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 24-12).
	Updated the Internal LPRC Accuracy parameters (see Table 24-18 and Table 24-19).
	Updated the ADC Module Specifications (12-bit Mode) parameters AD23a and AD24a (see Table 24-40).
	Updated the ADC Module Specifications (10-bit Mode) parameters AD23b and AD24b (see Table 24-41).
Section 25.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.

INDEX

Α	
AC Characteristics	252, 291
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC1 Register Map	42
ADC2 Register Map	42
Alternate Interrupt Vector Table (AIVT)	69
Analog-to-Digital Converter	
DMA	
Initialization	
Key Features	
Arithmetic Logic Unit (ALU)	28
Assembler	
MPASM Assembler	
Automatic Clock Stretch	

В

Block Diagrams	
16-bit Timer1 Module	145
ADC1 Module	208
Connections for On-Chip Voltage Regulator	226
ECAN Module	180
Input Capture	153
Output Compare	
PIC24H	
PIC24H CPU Core	24
PIC24H Oscillator System Diagram	123
PIC24H PLL	125
Reset System	65
Shared Port Structure	141
SPI	159
Timer2 (16-bit)	149
Timer2/3 (32-bit)	148
UART	173
Watchdog Timer (WDT)	227

С

C Compilers	
MPLAB C18	
Clock Switching	131
Enabling	131
Sequence	131
Code Examples	
Erasing a Program Memory Page	62
Initiating a Programming Sequence	
Loading Write Buffers	63
Port Write/Read	142
PWRSAV Instruction Syntax	
Code Protection	. 221, 228
Configuration Bits	
Description (Table)	
Configuration Register Map	
Configuring Analog Port Pins	142
CPU	
Control Register	
CPU Clocking System	124
PLL Configuration	124
Selection	124
Sources	124
Customer Change Notification Service	321

Customer Notification Service Customer Support	
D	
Data Address Space	31
Alignment	31
Memory Map for PIC24HJXXXGPX06A/X08A/X1	0A
Devices with 16 KB RAM	33
Memory Map for PIC24HJXXXGPX06A/X08A/X1	0A
Devices with 8 KB RAM	32
Near Data Space	31
Software Stack	53
Width	31
DC and AC Characteristics	
Graphs and Tables	297
DC Characteristics	242
Doze Current (IDOZE)	
High Temperature	288
I/O Pin Input Specifications	248
I/O Pin Output Specifications	50, 290
Idle Current (IDOZE)	247
Idle Current (IIDLE)	245
Operating Current (IDD)	
Operating MIPS vs. Voltage	288
Power-Down Current (IPD)	
Power-down Current (IPD)	288
Program Memory	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	
Development Support	237
DMA Module	
DMA Register Map	
DMAC Registers	
DMAxCNT	
DMAxCON	
DMAxPAD	
DMAxREQ	
DMAxSTA	
DMAxSTB	114

Е

ECAN Module
CiFMSKSEL2 register 199
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1) 44
ECAN1 Register Map (C1CTRL1.WIN = 0) 45
ECAN1 Register Map (C1CTRL1.WIN = 1) 45
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1) 47
ECAN2 Register Map (C2CTRL1.WIN = 0) 47
ECAN2 Register Map (C2CTRL1.WIN = 1) 48
Frame Types 179
Modes of Operation 181
Overview 179
ECAN Registers
Filter 15-8 Mask Selection Register
(CiFMSKSEL2) 199
Electrical Characteristics 241
AC 252, 291
Enhanced CAN Module 179
Equations
Device Operating Frequency 124
FOSC Calculation 124
XT with PLL Mode Example 125
Errata 13