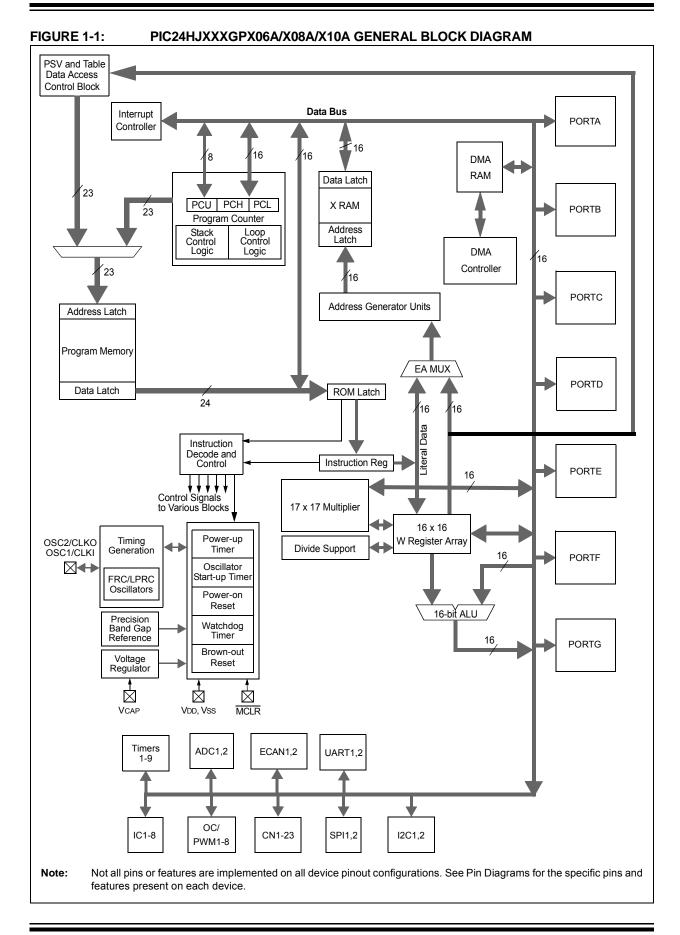


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp506a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description
AN0-AN31	I	Analog	Analog input channels.
AVDD	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI CLKO	I O	ST/CMOS	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX C1TX C2RX C2TX	 0 0	ST — ST —	ECAN1 bus receive pin. ECAN1 bus transmit pin. ECAN2 bus receive pin. ECAN2 bus transmit pin.
PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3	I/O I I/O I I/O I	ST ST ST ST ST ST	Data I/O pin for programming/debugging communication channel 1. Clock input pin for programming/debugging communication channel 1. Data I/O pin for programming/debugging communication channel 2. Clock input pin for programming/debugging communication channel 2. Data I/O pin for programming/debugging communication channel 3. Clock input pin for programming/debugging communication channel 3.
IC1-IC8	I	ST	Capture inputs 1 through 8.
INT0 INT1 INT2 INT3 INT4		ST ST ST ST ST	External interrupt 0. External interrupt 1. External interrupt 2. External interrupt 3. External interrupt 4.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
OCFA OCFB OC1-OC8	 0	ST ST —	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare Fault B input (for Compare Channels 5, 6, 7 and 8). Compare outputs 1 through 8.
OSC1 OSC2	I I/O	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
0002	1/0		mode. Optionally functions as CLKO in RC and EC modes.
RA0-RA7 RA9-RA10 RA12-RA15	I/O I/O I/O	ST ST ST	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.
RC1-RC4 RC12-RC15	I/O I/O	ST ST	PORTC is a bidirectional I/O port.
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.
RE0-RE7	I/O	ST	PORTE is a bidirectional I/O port.
RF0-RF8 RF12-RF13	I/O	ST	PORTF is a bidirectional I/O port.
RG0-RG3 RG6-RG9 RG12-RG15	I/O I/O I/O	ST ST ST	PORTG is a bidirectional I/O port.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input P = Powe O = Output I = Input

TABLE 1-1:	FINUU		CRIPTIONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	Description
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	SPI1 data in.
SDO1	0	_	SPI1 data out.
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	SPI2 data in.
SDO2	0	_	SPI2 data out.
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	Synchronous serial data input/output for I2C2.
SOSCI	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0	_	32.768 kHz low-power oscillator crystal output.
TMS	I	ST	JTAG Test mode select pin.
TCK	I	ST	JTAG test clock input pin.
TDI	I	ST	JTAG test data input pin.
TDO	0	—	JTAG test data output pin.
T1CK	I	ST	Timer1 external clock input.
T2CK	I	ST	Timer2 external clock input.
T3CK	I	ST	Timer3 external clock input.
T4CK	I	ST	Timer4 external clock input.
T5CK	I	ST	Timer5 external clock input.
T6CK	I	ST	Timer6 external clock input.
T7CK	I	ST	Timer7 external clock input.
T8CK	I	ST	Timer8 external clock input.
T9CK	Ι	ST	Timer9 external clock input.
U1CTS	I	ST	UART1 clear to send.
U1RTS	0	—	UART1 ready to send.
U1RX	I	ST	UART1 receive.
U1TX	0	—	UART1 transmit.
U2CTS	I	ST	UART2 clear to send.
U2RTS	0	—	UART2 ready to send.
U2RX	I	ST	UART2 receive.
U2TX	0	—	UART2 transmit.
Vdd	Р	_	Positive supply for peripheral logic and I/O pins.
VCAP	Р		CPU logic filter capacitor connection.
Vss	Р		Ground reference for logic and I/O pins.
VREF+	I	Analog	Analog voltage reference (high) input.
VREF-	Ι	Analog	Analog voltage reference (low) input.
Legend: CMC	OMO = 200	S compatible	e input or output Analog = Analog input P = Power

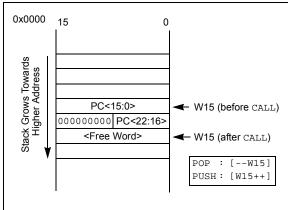
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output P = Power I = Input

4.2.6 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the PIC24HJXXXGPX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSB of the PC is zeroextended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSB
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-5: CALL STACK FRAME

4.2.7 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code, when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code, when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

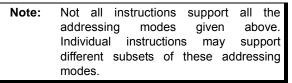
4.3 Instruction Addressing Modes

The addressing modes in Table 4-34 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS


The 3-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2 where:

Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct) which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the page (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - Perform a dummy table write operation (TBLWTL) to any address within the page that needs to be erased.
 - d) Write 0x55 to NVMKEY.
 - e) Write 0xAA to NVMKEY.
 - f) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	i
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA<15:0> pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

Note: A program memory page erase operation is set up by performing a dummy table write (TBLWTL) operation to any address within the page. This methodology is different from the page erase operation on dsPIC30F/33F devices in which the erase page was selected using a dedicated pair of registers (NVMADRU and NVMADR).

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U1RXIP<2:0>		—		SPI1IP<2:0>	
bit 15							bit
11.0		R/W-0		11.0		R/W-0	
U-0	R/W-1	SPI1EIP<2:0>	R/W-0	U-0	R/W-1	T3IP<2:0>	R/W-0
bit 7		0111211 \2.02				1011 \2.02	bit
510 1							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	:0>: UART1 Rece		Prioritv bits			
		rupt is priority 7 (-	-			
	•						
	•						
	001 = Inter	rupt is priority 1					
		rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8		>: SPI1 Event In	=	-			
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 7		ented: Read as '					
bit 6-4	-	:0>: SPI1 Error II		ty bits			
		rupt is priority 7 (-	-			
	•						
	•						
		rupt is priority 1					
h :+ 0		rupt source is dis					
bit 3 bit 2-0	-	ented: Read as '					
DIL 2-0		: Timer3 Interrupt rupt is priority 7 (-	v interrunt)			
	•		nightest phon	ly interrupt)			
	•						
	• 001 = Inter	muchic criteriter d					

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—		T6IP<2:0>		—	— DMA4IP<2:0>					
bit 15							bit			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	—	—				OC8IP<2:0>				
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 1 <i>5</i>	l inima la vere	nted. Deed at f	<u>`</u>							
bit 15	-	nted: Read as '								
bit 14-12		Timer6 Interrupt	•							
	 111 = Interrupt is priority 7 (highest priority interrupt) 									
	•									
	•									
		upt is priority 1	ablad							
L:1 11		upt source is dis								
bit 11	-	nted: Read as '								
bit 10-8		D>: DMA Channe		•	e interrupt Prio	ity bits				
	•	upt is priority 7 (I	lignest phone	y interrupt)						
	•									
	•									
		upt is priority 1	ablad							
		upt source is dis								
bit 7-3	Unimplemented: Read as '0'									
bit 2-0	OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	111 = Interru •	upt is priority 7 (i	nignest priorit	y interrupt)						
	•									
	•									
		upt is priority 1 upt source is dis								

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4 ⁽²⁾	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)
bit 7							bit 0

Legend:			
R = Readable bit	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL		—	—	—	—
bit 15			•				bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7			•				bit 0

Legend:	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in hardware only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Compare x
	0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

16.3 SPI Control Registers

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	_	SPISIDL			—		—
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
_	SPIROV	_	_	_	_	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	SPIEN: SPIx Enable bit
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module
bit 14	Unimplemented: Read as '0'
bit 13	SPISIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register 0 = No overflow has occurred
bit 5-2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 19-11: CIFEN1: ECAN[™] MODULE ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

-n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown

bit 15-0 FLTENn: Enable Filter n (0-15) to Accept Messages bits

1 = Enable Filter n

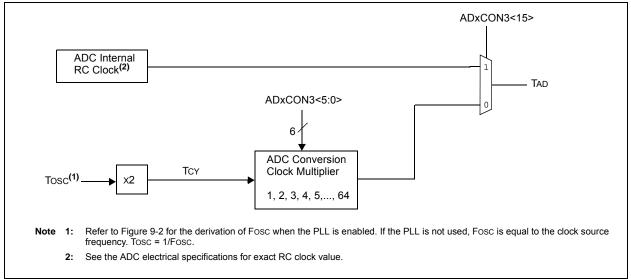
0 = Disable Filter n

REGISTER [·]		nSID: ECAN⊺ 1,, 15)	MODULE /	ACCEPTANCI	E FILTER n S	FANDARD IDI	ENTIFIER	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			SID<	:10:3>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID<2:0>				EXIDE		EID<1	17:16>	
bit 7							bit C	
Legend: R = Readable bit W = Writable b -n = Value at POR '1' = Bit is set bit 15-5 SID<10:0>: Standard Identifie			U = Unimplen '0' = Bit is clea	nented bit, read ared	l as '0' x = Bit is unkr	nown		
bit 15-5	1 = Message	address bit SII address bit SII	Dx must be '1					
bit 4	Unimplemer	ted: Read as '	0'					
bit 3	<u>If MIDE = 1:</u> 1 = Match on 0 = Match on <u>If MIDE = 0:</u>	EXIDE: Extended Identifier Enable bit <u>If MIDE = 1:</u> 1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses						
bit 2	Unimplemer	ted: Read as '	0'					
bit 1-0	1 = Message	Extended Ider address bit Ell address bit Ell	Dx must be '1					

REGISTER 19-17: CiRXFnEID: ECANTM MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
DA4	D 44/	D///		D/4/	D 0 0 /		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7						bit 0	
Lanand							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

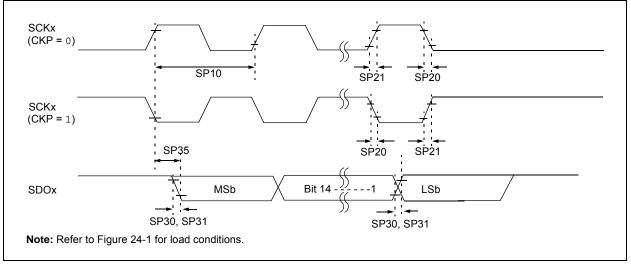
bit 15-0 EID<15:0>: Extended Identifier bits


1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ MODULE FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-	0
F7MSK<1:0>		F6MSł	<<1:0>	F5MS	K<1:0>	F4MSI	K<1:0>	
bit 15								bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-	.0
-	SK<1:0>	F2MSł		-	K<1:0>		K<1:0>	0
bit 7		1 2100	(1.0	1 1110	11.0	1 0100	-	bit 0
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	a = Value at POR (1' = Bit is set 0' = Bit is cleared x = E		x = Bit is unkr	nown				
bit 15-14		: Mask Source	e for Filter 7 b	it				
		ed; do not use ance Mask 2 reg	nisters contair	n mask				
	•	ance Mask 1 reg						
		ance Mask 0 reg						
bit 13-12		: Mask Source	e for Filter 6 b	it				
		ed; do not use ance Mask 2 reg	nistore contair	mask				
		ance Mask 2 reg						
	•	ance Mask 0 reg	•					
bit 11-10		: Mask Source	e for Filter 5 b	it				
		ed; do not use	niatoro contair	mool				
		ance Mask 2 reg ance Mask 1 reg						
		ance Mask 0 reg						
bit 9-8	F4MSK<1:0>	. Mask Source	e for Filter 4 b	it				
		ed; do not use						
	-	ance Mask 2 reg ance Mask 1 reg						
		ance Mask 0 reg						
bit 7-6	F3MSK<1:0>	. Mask Source	e for Filter 3 b	it				
		ed; do not use						
		ance Mask 2 reg ance Mask 1 reg						
		ance Mask 0 reg						
bit 5-4	-	: Mask Source	-					
		ed; do not use						
		ance Mask 2 reg ance Mask 1 reg						
		ance Mask 1 reg						
bit 3-2		. Mask Source						
		ed; do not use						
		ance Mask 2 reg						
		ance Mask 1 reg ance Mask 0 reg						
bit 1-0	-	: Mask Source	-					
		ed; do not use						
	10 = Accepta	ance Mask 2 reg						
		ance Mask 1 reg						
	00 = Accepta	ance Mask 0 reg	jisters contair	IIIIask				


SAMC<4:0> ⁽¹⁾ D R/W-0 R/W-0 R/W-0 R/A CS<7:0> ⁽²⁾ U = Unimplemented bit, read as '0' '0' = Bit is cleared $x = Bit$ is unknown to bit	bit 8 W-0 bit 0
CS<7:0> ⁽²⁾ U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown	W-0
CS<7:0> ⁽²⁾ U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown	
U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown	bit (
'0' = Bit is cleared x = Bit is unknown	bit
'0' = Bit is cleared x = Bit is unknown	
'0' = Bit is cleared x = Bit is unknown	
bit	
sion Clock Select bits ⁽²⁾	
= 64 · TCY = TAD	
3 · TCY = TAD	
2 • TCY = TAD	
(-0.05) = 1.1.1	
=	3 · TCY = TAD 2 · TCY = TAD 1 · TCY = TAD <2:0>) = 111. C) = 1.

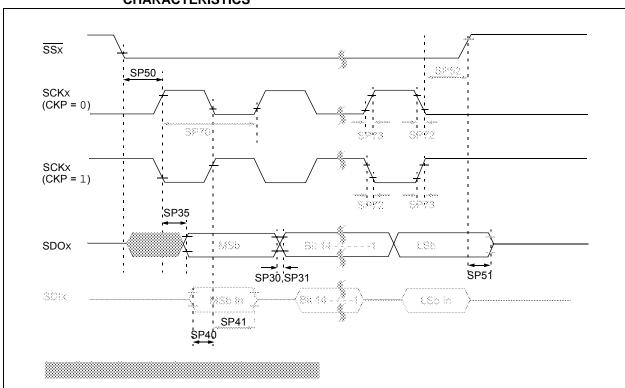

REGISTER 20-3: ADxCON3: ADCx CONTROL REGISTER 3

TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

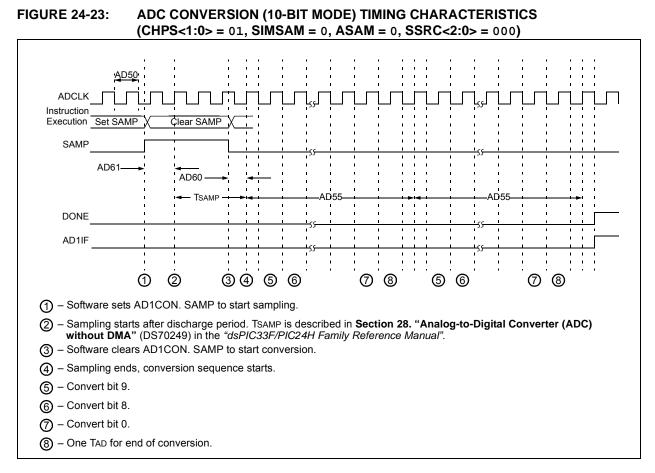

AC CHARAG	CTERISTICS		Standard Operating (unless otherwise s Operating temperate	s tated) ure -40°C ≤ [·]	3.0V to 3.6V TA \leq +85°C for TA \leq +125°C for	
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 24-29		—	0,1	0,1	0,1
10 MHz	—	Table 24-30	—	1	0,1	1
10 MHz	—	Table 24-31	—	0	0,1	1
15 MHz	—	—	Table 24-32	1	0	0
11 MHz	—	—	Table 24-33	1	1	0
15 MHz	_	_	Table 24-34	0	1	0
11 MHz			Table 24-35	0	0	0

FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

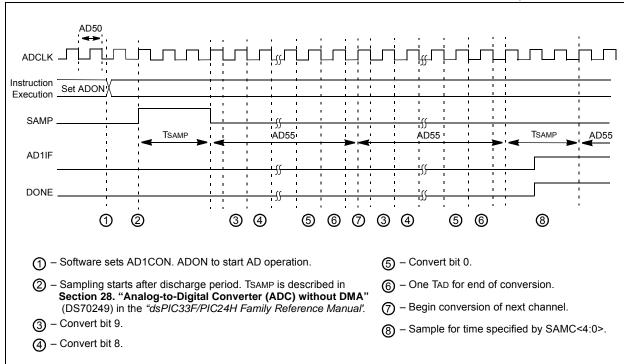


FIGURE 24-15: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 24-24: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						•			
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	Clock Parameters								
HAD50	TAD	ADC Clock Period ⁽¹⁾	147			ns	—		
Conversion Rate									
		0011							

TABLE 25-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
Clock Parameters							
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_		ns	_
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾			800	Ksps	_
	These permeters are characterized but not tested in manufacturing						

Note 1: These parameters are characterized but not tested in manufacturing.