

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp506a-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

PIC24H Product Families		2
2.0 Guidelines for Getting Started with 16-Bit Mid	crocontrollers	19
4.0 Memory Organization		29
5.0 Flash Program Memory		59
6.0 Reset		65
7.0 Interrupt Controller		69
8.0 Direct Memory Access (DMA)		113
9.0 Oscillator Configuration		123
10.0 Power-Saving Features		133
11.0 I/O Ports		141
12.0 Timer1		145
16.0 Serial Peripheral Interface (SPI)		159
17.0 Inter-Integrated Circuit [™] (I ² C [™])		165
	er (UART)	
19.0 Enhanced CAN (ECAN™) Module		179
	С)	
21.0 Special Features		221
22.0 Instruction Set Summary		229
23.0 Development Support		237
24.0 Electrical Characteristics		241
25.0 High Temperature Electrical Characteristics .		287
26.0 DC and AC Device Characteristics Graphs		297
Appendix A: Migrating from PIC24HJXXXGPX06/X	08/X10 Devices to PIC24HJXXXGPX06A/X08A/X10A Devices	311
Appendix B: Revision History		312
Index		317
The Microchip Web Site		321
Customer Change Notification Service		321
Customer Support		321
Reader Response		322
Product Identification System		323

3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any point.

The PIC24HJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The PIC24HJXXXGPX06A/X08A/X10A instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC24HJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the PIC24HJXXXGPX06A/X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

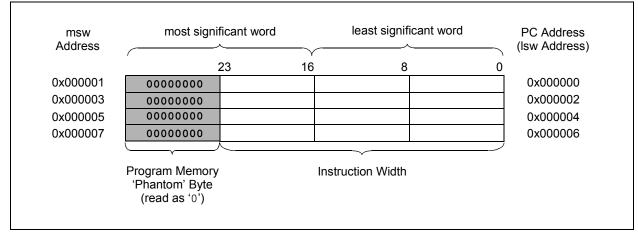
3.2 Special MCU Features

The PIC24HJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible.

The PIC24HJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF1EID	0446		1	1	EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C1RXF2EID	044A		EID<15:8>								EID<	7:0>				xxxx		
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF3EID	044E		EID<15:8>								EID<	7:0>				xxxx		
C1RXF4SID	0450		SID<10:3>						SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx		
C1RXF4EID	0452		EID<15:8>							EID<	7:0>				xxxx			
C1RXF5SID	0454		SID<10:3>						SID<2:0>		_	EXIDE	-	EID<'	17:16>	xxxx		
C1RXF5EID	0456		EID<15:8>							EID<	7:0>				xxxx			
C1RXF6SID	0458		SID<10:3>					SID<2:0>		_	EXIDE	_	EID<'	17:16>	xxxx			
C1RXF6EID	045A		EID<15:8>				EID<7:0>						xxxx					
C1RXF7SID	045C		SID<10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx			
C1RXF7EID	045E		EID<15:8>							EID<	7:0>				xxxx			
C1RXF8SID	0460		SID<10:3>					SID<2:0>		—	EXIDE	_	EID<'	17:16>	xxxx			
C1RXF8EID	0462				EID<	:15:8>				EID<7:0>					xxxx			
C1RXF9SID	0464				SID<	:10:3>				SID<2:0> — EXIDE —					EID<	17:16>	xxxx	
C1RXF9EID	0466				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF10SID	0468				SID<	:10:3>				SID<2:0> — EXIDE — EIE					EID<	17:16>	xxxx	
C1RXF10EID	046A				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF12EID	0472				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF13SID	0474		SID<10:3>				SID<2:0> — EXIDE —				EID<	17:16>	xxxx					
C1RXF13EID	0476		EID<15:8>				EID<7:0>						xxxx					
C1RXF14SID	0478				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:1			17:16>	xxxx				
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

ONILY (CONTINUED) DICOALLINNY ODEACA/E40A/C40A DEVICES

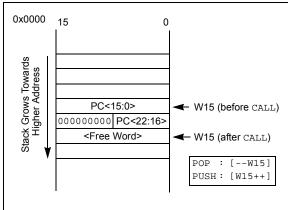
Legend:

© 2009-2012 Microchip Technology Inc.

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

4.2.6 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the PIC24HJXXXGPX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-5. For a PC push during any CALL instruction, the MSB of the PC is zeroextended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSB
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-5: CALL STACK FRAME

4.2.7 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code, when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code, when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

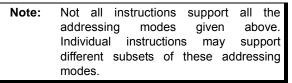
4.3 Instruction Addressing Modes

The addressing modes in Table 4-34 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS


The 3-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2 where:

Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct) which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	See Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—	_	1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Тоѕт	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
MCLR	Any Clock	Trst	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any clock	Trst	—	_	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	_	3
Trap Conflict	Any Clock	Trst	—	—	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.

- 3: TRST = Internal state Reset time (20 μs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL lock time (20 μ s nominal).
- **6:** TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the Reset signal is released:

- The oscillator circuit has not begun to oscillate
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used)
- The PLL has not achieved a lock (if PLL is used)

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when the Reset signal is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T6IE	DMA4IE	—	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE				
bit 15					•		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE				
bit 7				0			bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown				
bit 15	T6IE: Timer6	Interrupt Enabl	e bit								
		request enable									
	0 = Interrupt r	equest not ena	bled								
bit 14		A Channel 4 D		Complete Interi	rupt Enable bit						
		equest enable equest not ena									
bit 13	•	ted: Read as '									
bit 12	•	ut Compare Ch		unt Enable bit							
511 12	•	request enable									
		0 = Interrupt request not enabled									
bit 11	OC7IE: Outpu	ut Compare Ch	annel 7 Interr	upt Enable bit							
		equest enable equest not ena									
bit 10	OC6IE: Outpu	ut Compare Ch	annel 6 Interr	upt Enable bit							
		equest enable equest not ena									
bit 9	OC5IE: Outpu	ut Compare Ch	annel 5 Interr	upt Enable bit							
		equest enable equest not ena									
bit 8		Capture Channe		Enable bit							
		equest enable equest not ena									
bit 7		Capture Channe		Enable bit							
	-	equest enable									
	•	request not ena									
bit 6	-	Capture Channe		Enable bit							
		equest enable equest not ena									
bit 5	•	Capture Channe		-nable bit							
	-	equest enable	-								
	0 = Interrupt r	equest not ena	bled								
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Interi	rupt Enable bit						
		equest enable equest not ena									
bit 3	-	Event Interrup									
bit J		equest enable									
		equest not ena									

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
_	_	_	_	—		DMA1IP<2:0>			
bit 15	·	·					bit		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—		AD1IP<2:0>				U1TXIP<2:0>			
bit 7					•		bit		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'			
-n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknow									
bit 10-8 bit 7 bit 6-4	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen	>: DMA Channe pt is priority 7 (I pt is priority 1 pt source is dis ted: Read as '(ADC1 Convers	nighest priori abled)'	ty interrupt)					
	• • 001 = Interru	pt is priority 7 (I pt is priority 1 pt source is dis		ty interrupt)					
bit 3	Unimplemen	ted: Read as 'd)'						
bit 2-0		•: UART1 Trans pt is priority 7 (I							
	001 = Interru 000 = Interru	ot is priority 1 pt source is dis	abled						

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4(2)	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
T9MD	T8MD	T7MD	T6MD		_	_	_		
bit 15	- I		1				bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
_		—	—	—	—	I2C2MD	AD2MD ⁽¹⁾		
bit 7							bit (
Logondi									
Legend: R = Readal	ble bit	W = Writable	hit	U = Unimplem	ented bit rea	ad as '0'			
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown		
							-		
bit 15	T9MD: Timer	9 Module Disab	ole bit						
	1 = Timer9 m	odule is disable	ed						
	0 = Timer9 m	odule is enable	d						
bit 14	T8MD: Timer	8 Module Disab	ole bit						
		odule is disable							
		odule is enable							
bit 13	T7MD: Timer	7 Module Disab	ole bit						
	-	odule is disable							
		odule is enable	-						
bit 12		6 Module Disat							
		odule is disable odule is enable							
bit 11-2		ted: Read as '							
bit 1	•								
		I2C2MD: I2C2 Module Disable bit 1 = I2C2 module is disabled							
		lule is enabled							
bit 0		2 Module Disab	le bit ⁽¹⁾						
		ule is disabled							
	$0 = AD2 \mod$								

Note 1: The PCFGx bits will have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	_	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽¹⁾	TCKPS	<1:0>(1)	—	—	TCS ^(1,3)	—
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Starts	nery On bit ⁽¹⁾ s 16-bit Timery		
	•	s 16-bit Timery		
bit 14	•	mented: Read as '0'		
bit 13		top in Idle Mode bit ⁽²⁾		
		ontinue module operation wh nue module operation in Idle		
bit 12-7	Unimple	mented: Read as '0'		
bit 6	TGATE:	Timery Gated Time Accumul	ation Enable bit ⁽¹⁾	
		s ignored.		
bit 5-4	TCKPS< 11 = 1:25 10 = 1:64 01 = 1:8 00 = 1:1		escale Select bits ⁽¹⁾	
bit 3-2	Unimple	mented: Read as '0'		
bit 1	TCS: Tim	nery Clock Source Select bit ⁽	1,3)	
		nal clock from pin TyCK (on nal clock (Fcy)	the rising edge)	
bit 0	Unimple	mented: Read as '0'		
Note 1:		peration is enabled (T2CON- set through T2CON.	<3> = 1), these bits have no ef	ffect on Timery operation; all time

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 13. "Output Compare" (DS70209), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

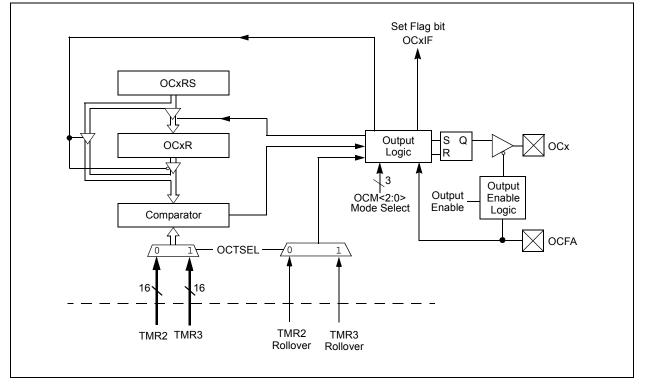
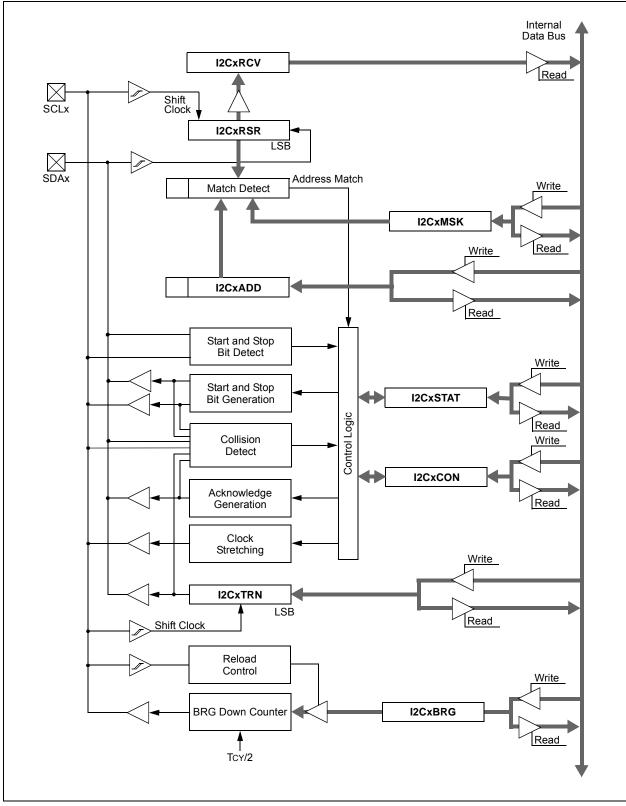
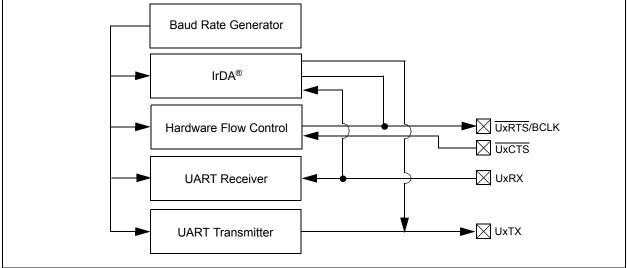



FIGURE 17-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1 OR 2)

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJXXXGPX06A/X08A/X10A device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8 or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit Prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART is shown in Figure 18-1. The UART module consists of the key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—		—		—	—	
bit 15							bit	
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE	
bit 7		I					bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7 bit 6	1 = Interrupt r 0 = Interrupt r WAKIE: Bus 1 = Interrupt r	I Message Inter request enabled request not ena Wake-up Activi request enabled request not ena	d Ibled ty Interrupt E d					
bit 5	ERRIE: Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled							
bit 4	Unimplemen	ted: Read as 'o)'					
bit 3	1 = Interrupt i	Almost Full Inf request enabled request not ena	d	e bit				
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled							
bit 1	 RBIE: RX Buffer Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled 							
bit 0	0 = Interrupt request not enabled TBIE: TX Buffer Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled							

REGISTER 19-7: CIINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No. Typical ⁽²⁾ Max			Doze Ratio	Units		Conditions		
Doze Current (IDO	ze) ⁽¹⁾	•			•			
DC73a	11	35	1:2	mA			40 MIPS	
DC73f	11	30	1:64	mA	-40°C	3.3V		
DC73g	11	30	1:128	mA				
DC70a	42	50	1:2	mA		3.3V	40 MIPS	
DC70f	26	30	1:64	mA	+25°C			
DC70g	25	30	1:128	mA				
DC71a	41	50	1:2	mA			40 MIPS	
DC71f	25	30	1:64	mA	+85°C	3.3V		
DC71g	24	30	1:128	mA				
DC72a	42	50	1:2	mA				
DC72f	26	30	1:64	mA	+125°C	3.3V	40 MIPS	
DC72g	25	30	1:128	mA				

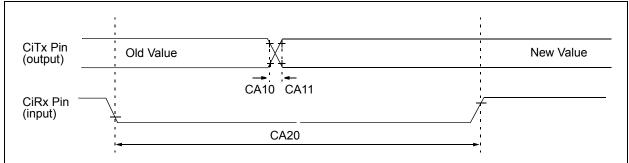
TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail with overshoot/undershoot < 250 mV
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 24-32:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency		_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	—	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	_		—	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_		—	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	_	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		50	ns	—	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 24-21: ECAN™ MODULE I/O TIMING CHARACTERISTICS

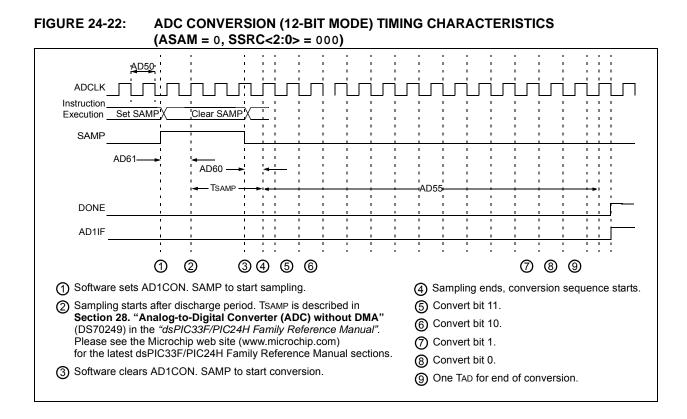


TABLE 24-38: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol Characteristic ⁽¹⁾		Min	Typ ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time	—		_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	_		_	ns	See parameter D031
CA20	Tcwf	Pulse-Width to Trigger CAN Wake-up Filter	120	—	l	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

