

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp506a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

PIC24	H Product Families	2
1.0	Device Overview	15
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	19
3.0	CPU	23
4.0	Memory Organization	29
5.0	Flash Program Memory	59
6.0	Reset	65
7.0	Interrupt Controller	69
8.0	Direct Memory Access (DMA)	113
9.0	Oscillator Configuration	123
10.0	Power-Saving Features	133
11.0	I/O Ports	141
12.0	Timer1	145
13.0	Timer2/3, Timer4/5, Timer6/7 and Timer8/9	147
14.0	Input Capture	153
15.0	Output Compare	155
16.0	Serial Peripheral Interface (SPI)	159
17.0	Inter-Integrated Circuit™ (I ² C [™])	165
18.0	Universal Asynchronous Receiver Transmitter (UART)	173
19.0	Enhanced CAN (ECAN™) Module	179
20.0	10-bit/12-bit Analog-to-Digital Converter (ADC)	207
21.0	Special Features	221
22.0	Instruction Set Summary	229
23.0	Development Support	237
24.0	Electrical Characteristics	
25.0	High Temperature Electrical Characteristics	
26.0	DC and AC Device Characteristics Graphs	297
27.0	Packaging Information	301
Apper	ndix A: Migrating from PIC24HJXXXGPX06/X08/X10 Devices to PIC24HJXXXGPX06A/X08A/X10A Devices	311
Apper	ndix B: Revision History	312
Index		317
The N	licrochip Web Site	321
Custo	mer Change Notification Service	321
Custo	mer Support	321
Reade	er Response	322
Produ	ct Identification System	323

3.3 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

<u> </u>	U-0	U-0	0-0	0-0	U-0	0-0	R/W-0					
	_	_		_		—	DC bit 9					
							DIL O					
R/W-0 ⁽¹⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С					
bit 7					•		bit 0					
Legend:		D - Deedeble	L:1	II — Ilusiusus Isu		aa (0)						
C = Clear o	niy Dit	R = Readable	DIL	v = 0 nimpler	nented bit, read	as u						
5 = Set Only	y bit	vv = vvritable	W = Willable bit -II = Value at POR									
	el		areu		nown]					
bit 15-9	Unimplemen	ted: Read as '	כ'									
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit									
1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word size												
	of the res	sult occurred	th low-order k	nit (for hyte siz	ed data) or 8th	low-order bit (for word sized					
	data) of t	he result occur	red									
bit 7-5	IPL<2:0>: CP	U Interrupt Pri	ority Level Sta	atus bits ⁽²⁾								
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled											
	110 = CPU In	terrupt Priority	Level is 6 (14	i)								
	101 = CPU In	iterrupt Priority	Level is 5 (13	3) >>								
	011 = CPU In	iterrupt Priority	Level is 3 (11)								
	010 = CPU In	terrupt Priority	Level is 2 (10))								
	001 = CPU In	terrupt Priority	Level is 1 (9)									
hit 1		iterrupt Priority	Level IS 0 (8)									
DIT 4	RA: REPEAT	Loop Active bit										
	0 = REPEAT ION	pop not in prog	ress									
bit 3	N: MCU ALU	Negative bit										
	1 = Result wa	is negative										
	0 = Result wa	is non-negative	e (zero or posi	itive)								
bit 2	OV: MCU ALL	J Overflow bit										
	This bit is use	d for signed ari	thmetic (2's co a state	omplement). It	indicates an ove	erflow of the ma	agnitude which					
	1 = Overflow	occurred for sid	e siale. aned arithmet	ic (in this arithr	metic operation)							
	0 = No overflo	ow occurred		,	,							
bit 1	Z: MCU ALU	Zero bit										
	1 = An operat	ion which affect	ts the Z bit ha	as set it at som	e time in the pa	st						
L:1.0	0 = The most	recent operatio	on which affeo	cts the Z bit has	s cleared it (i.e.,	a non-zero re	sult)					
bit 0	C: MCU ALU	Carry/Borrow t	Dit of Olevelfie and I									
	\perp = A carry-ou 0 = No carry-o	out from the Mos	st Significant t	bit of the resu	result occurred	I						
							_					
Note 1:	The IPL<2:0> bits a	are concatenat	ed with the IF	2<3> bit (COR	CON<3>) to for	m the CPU Int	errupt Priority					
l	PL<3> = 1.	i parenineses i		I L II IF L>3∕ =								

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-2	ABLE 4-20: ECANT REGISTER MAP WHEN CTCTRET.WIN = I FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY (CONTINUED)																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF1EID	0446				EID	<15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID	<10:3>					SID<2:0>		_	EXIDE		EID<1	7:16>	xxxx
C1RXF2EID	044A				EID	<15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID	<10:3>				SID<2:0> — EXIDE — EID<17:16					7:16>	xxxx		
C1RXF3EID	044E				EID	<15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID	<10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF4EID	0452				EID	<15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID	<10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF5EID	0456				EID	<15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID	<10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF6EID	045A				EID	<15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID	<10:3>					SID<2:0>		_	EXIDE		EID<1	7:16>	xxxx
C1RXF7EID	045E		EID<15:8>									EID<	7:0>	•	•		xxxx	
C1RXF8SID	0460		SID<10:3>								SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF8EID	0462				EID	<15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID	<10:3>				SID<2:0> — EXIDE — EID<17:16					7:16>	xxxx		
C1RXF9EID	0466				EID	<15:8>				EID<7:0>								xxxx
C1RXF10SID	0468				SID	<10:3>				SID<2:0> — EXIDE — EID<17:16>						7:16>	xxxx	
C1RXF10EID	046A				EID	<15:8>				EID<7:0>								xxxx
C1RXF11SID	046C				SID	<10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF11EID	046E				EID	<15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF12EID	0472				EID	<15:8>							EID<	7:0>				xxxx
C1RXF13SID	0474	SID<10:3>						SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx			
C1RXF13EID	0476	EID<15:8>						EID<7:0>							xxxx			
C1RXF14SID	0478		SID<10:3>						SID<2:0> — EXIDE — EID<17:16>						7:16>	xxxx		
C1RXF14EID	047A				EID	<15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID	<10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF15EID	047E		EID<15:8>							EID<7:0>							xxxx	

ONILY (CONTINUED) DICOALLINNY ODEACA/E40A/C40A DEV/ICEO

Legend:

© 2009-2012 Microchip Technology Inc.

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TADLE 4-2																	-	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	—	CSIDL	ABAT	_	RI	EQOP<2:0	>	OPN	MODE<2:0)>	—	CANCAP	—	-	WIN	0480
C2CTRL2	0502	—	—	—	_	_	—	—	_	—	—	_		C	NCNT<4:0)>		0000
C2VEC	0504	—	—	—		F	ILHIT<4:0>			—				ICODE<6:	0>			0000
C2FCTRL	0506		DMABS<2:0	>	—	_	_	—	—	_	—	—			FSA<4:0>			0000
C2FIFO	0508	_	_			FBP<5:0> — — FNRB<5:0>						0000						
C2INTF	050A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	T<7:0>							RERRC	NT<7:0>				0000
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSł	< <1:0>	F6MS	K<1:0>	F5MSI	K<1:0>	F4MSI	< <1:0>	F3MSK	<1:0>	F2MS	< <1:0>	F1MSI	<<1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	ISK<1:0> F13MSK<1:0> F12MSK<1:0> F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8					F8MS	K<1:0>	0000						

TABLE 4-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR PIC24HJ256GP610A DEVICES ONLY

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR PIC24HJ256GP610A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	e definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540								Recieved	Data Word								xxxx
C2TXD	0542								Transmit	Data Word								xxxx
Legend:	x = unk	nown value	e on Reset,	— = unimp	lemented, r	ead as '0'. I	Reset value	s are show	n in hexade	cimal for Pi	nHigh devic	es.						

PIC24HJXXXGPX06A/X08A/X10A

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾		
_	ERASE	_		NVMOP<3:0>(2)					
bit 7							bit 0		

Legend:	5	SO = Settable only bit		
R = Readable	bit V	V = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at P	OR "	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	WR: Write Cont	trol bit		
	1 = Initiates a l	Flash memory program or	erase operation. The operation	on is self-timed and the bit is
	cleared by	hardware once operation is	s complete	
hit 14		nable bit		
Dit 14	1 = Enable Fla	sh program/erase operation	ns	
	0 = Inhibit Flas	h program/erase operation	S	
bit 13	WRERR: Write	Sequence Error Flag bit		
	1 = An imprope	er program or erase sequer	nce attempt or termination has	s occurred (bit is set
	automatica	lly on any set attempt of th	e WR bit)	
hit 10 7	0 = The progra	m or erase operation comp	pleted normally	
DIT 6	1 - Porform th	Program Enable bit	by $N/MOR<3.05$ on the post	WP command
	0 = Perform the	e program operation specified	ied by NVMOP<3:0> on the next	ext WR command
bit 5-4	Unimplemente	d: Read as '0'	,	
bit 3-0	NVMOP<3:0>:	NVM Operation Select bits	(2)	
	1111 = Memory	y bulk erase operation (ER	ASE = 1) or no operation (ER.	ASE = 0)
	1110 = Reserve	ed		
	1101 = Erase (General Segment and FGS $= 1$ or polynomial (EP)	Configuration Register	
	1100 = Erase S	Secure Segment and FSS (Configuration Register	
	(ERAS	E = 1) or no operation (ER	ASE = 0)	
	1011 = Reserve	ed		
	•			
	•			
	• 0100 - Poson"	ed		
	0011 = Memory	y word program operation (ERASE = 0) or no operation (ERASE = 1)
	0010 = Memory	y page erase operation (EF	RASE = 1) or no operation (EF	RASE = 0)
	0001 = Memory	y row program operation (E	RASE = 0) or no operation (E	RASE = 1)
	0000 = Program	n or erase a single Configu	iration register byte	

Note 1: These bits can only be reset on a POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC5IP<2:0>		—		IC4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC3IP<2:0>				DMA3IP<2:0>	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
I							
bit 15	Unimpleme	nted: Read as ')'				
bit 14-12	IC5IP<2:0>:	: Input Capture C	hannel 5 Inte	errupt Priority b	oits		
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)			
	•		0	, i,			
	•						
	• 001 = Interr	unt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as ')'				
bit 10-8	IC4IP<2:0>:	: Input Capture C	hannel 4 Inte	errupt Priority b	oits		
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	• 001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 7	Unimpleme	ented: Read as 'o)'				
bit 6-4	IC3IP<2:0>	: Input Capture C	hannel 3 Inte	errupt Priority b	oits		
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 3	Unimpleme	ented: Read as 'o)'				
bit 2-0	DMA3IP<2:	0>: DMA Channe	el 3 Data Tra	nsfer Complete	e Interrupt Prid	ority bits	
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

9.1 CPU Clocking System

There are seven system clock options provided by the PIC24HJXXXGPX06A/X08A/X10A:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 21.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJXXXGPX06A/ X08A/X10A architecture.

Instruction execution speed or device operating frequency, FCY, is calculated, as shown in Equation 9-1:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

NOTES:

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾		TSIDL ⁽²⁾	—	-	—	—	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS	TCKPS<1:0> ⁽¹⁾		—	TCS ^(1,3)	—
bit 7							bit 0

Legend:							
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	TON: Timery	On bit ⁽¹⁾					
	1 = Starts 16-	bit Timery					
	0 = Stops 16-	bit Timery					
bit 14	Unimplemen	ited: Read as '0'					
bit 13	TSIDL: Stop	in Idle Mode bit ⁽²⁾					
	1 = Discontin 0 = Continue	ue module operation when a module operation in Idle mo	device enters Idle mode ode				
bit 12-7	Unimplemen	ited: Read as '0'					
bit 6	TGATE: Time	ery Gated Time Accumulatio	n Enable bit ⁽¹⁾				
	When TCS =	<u>1:</u>					
	This bit is ign	ored.					
	$\frac{\text{vvnen } 1\text{ CS} =}{1 = \text{Gated tim}}$	<u>0:</u> he accumulation enabled					
	0 = Gated tin	ne accumulation disabled					
bit 5-4	TCKPS<1:0>	: Timer3 Input Clock Presca	lle Select bits ⁽¹⁾				
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3-2	Unimplemen	ted: Read as '0'					
bit 1	TCS: Timery	Clock Source Select bit ^(1,3)					
	1 = External o 0 = Internal c	1 = External clock from pin TyCK (on the rising edge) 0 = Internal clock (Fcr)					
bit 0	Unimplemen	ted: Read as '0'					
Note 1: W	/hen 32-bit opera nctions are set tl	tion is enabled (T2CON<3> hrough T2CON.	= 1), these bits have no effect (on Timery operation; all timer			

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 19-11: CIFEN1: ECAN[™] MODULE ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							
R = Readable bit W = Writabl		W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

-n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown

bit 15-0 FLTENn: Enable Filter n (0-15) to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 19-13: CIBUFPNT2: ECAN™ MODULE FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BF	P<3:0>			F6B	P<3:0>	
bit 15							bit 8
DAALO	DMU O	DMUO	D 444.0	DAM 0	D 444.0	DMUO	D 444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F2RD<3:0>					F4B	P<3:0>	
bit /							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F7BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 7 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14						
	•						
	•						
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 7-4	F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14						
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F4BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 4 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 מ RX Buffer 0				

REGISTER 2	20-2: /	ADxCON2: A	DCx (CONTROL RE	EGISTER 2	(where x = 1 o	or 2)	
R/W-0	R/V	V-0 R/	W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG	<2:0>				CSCNA	CHPS	S<1:0>
bit 15								bit 8
R-0	U-	-0 R/	W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—			SMPI	<3:0>		BUFM	ALTS
bit 7								bit 0
Legend:								
R = Readable	e bit	W = W	Vritable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at I	POR	'1' = B	it is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 15-13	VCFG-	<2:0>: Conver	ter Volt	age Reference	Configuration	n bits		
		VREF+		VREF-				
	000	AVdd		AVss	=			
	001	External VR	EF+	AVss				
	010	AVdd		External VREF-				
	011	External VR	EF+	External VREF-				
	1xx	AVdd		AVss				
bit 12-11	Unimp	lemented: Re	ead as '	0'				
bit 10	CSCN	A: Scan Input	Selectio	ons for CH0+ d	uring Sample	A bit		
	1 = Sc	an inputs						
	0 = Do	o not scan inpu	uts					
bit 9-8	CHPS	<1:0>: Selects	Chann	els Utilized bits				
		AD12B = 1, C	HPS<1	:0> is: U-0, Ur	implemente	d, Read as '0'		
	1x = C 01 = C	onverts CH0 a	and CH	1				
	00 = C	onverts CH0						
bit 7	BUFS:	Buffer Fill Sta	tus bit (only valid whe	n BUFM = 1)			
	1 = AD	DC is currently	filling s	second half of b	ouffer, user sh	ould access dat	ta in first half	
	0 = AE	DC is currently	filling f	irst half of buffe	er, user should	d access data in	second half	
bit 6	Unimp	lemented: Re	ead as '	0'				
bit 5-2	SMPI< operati	3:0>: Selects	Increme Jpt	ent Rate for DN	A Addresses	s bits or number	of sample/con	version
	1111 =	Increments t	he DM	A address or g	enerates inte	rrupt after comp	pletion of every	16th sample/
		conversion c	peratio	n Nadalaan ay ay				
	1110 =	conversion c	ne DIVIA neratio	a address or go	enerates inte	rrupt after comp	pletion of every	15th sample/
	•	0011/013/011/0	peratio					
	•							
	•							-l l - /
	0001 =	version oper	ation	address or ger	ierates intern	upt after comple	lion of every 2n	d sample/con-
	0000 =	Increments ti sion operatio	ne DMA on	address or ge	nerates interr	upt after comple	etion of every s	ample/conver-
bit 1	BUFM	: Buffer Fill Mo	de Sele	ect bit				
	1 = Sta 0 = Alv	arts filling first ways starts fill	half of l	buffer on first ir er from the beg	iterrupt and s jinning	econd half of bu	iffer on next int	errupt
bit 0	ALTS:	Alternate Inpu	ut Samp	le Mode Selec	t bit			
	1 = Us 0 = Alv	ses channel in ways uses cha	put sele annel in	ects for Sample put selects for	A on first sar Sample A	mple and Sampl	e B on next sa	mple

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15						•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—			DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 20-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3,4)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|---------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 | R/\\/_0 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PCFG<31:16>: ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
- 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

AC CHA	ARACTER	ISTICS		Standard Ope (unless other Operating ten	erating (rwise stand rperature	Conditio ated) e -40°C -40°C	ons: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	—
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	<u> </u>	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	_
	Setup Time	400 kHz mode	100		ns		
		1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μS	_
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission
			1 MHz mode ⁽¹⁾	0.5		μS	Call Start
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	—

TABLE 24-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CH	AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbo I	Characteristic	Min.	Тур	Max.	Units	Conditions		
	Device Supply								
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V	_		
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V	_		
			Referen	ce Inpu	Its				
AD05	Vrefh	Reference Voltage High	AVss + 2.5	_	AVDD	V			
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0		
AD06	Vrefl	Reference Voltage Low	AVss	-	AVDD – 2.5	V			
AD06a			0	_	0	V	Vrefh = AVdd Vrefl = AVss = 0		
AD07	Vref	Absolute Reference Voltage	2.5	—	3.6	V	VREF = VREFH - VREFL		
AD08	IREF	Current Drain	—	—	10	μA	ADC off		
AD08a	IAD	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 1 12-bit ADC mode, See Note 1		
			Analo	g Input					
AD12	VINH	Input Voltage Range VINH	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range VINL	VREFL		AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Imped- ance of Analog Voltage Source			200 200	Ω Ω	10-bit ADC 12-bit ADC		

TABLE 24-39: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

Revision C (March 2011)

This revision includes typographical and formatting changes throughout the data sheet text. In addition, all occurrences of VDDCORE have been removed.

All other major changes are referenced by their respective section in the following table.

TABLE B-2:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers"	The frequency limitation for device PLL start-up conditions was updated in Section 2.7 "Oscillator Value Conditions on Device Start-up".
	The second paragraph in Section 2.9 "Unused I/Os" was updated.
Section 4.0 "Memory Organization"	The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-6): • TMR1 • TMR2 • TMR3 • TMR4 • TMR5 • TMR6 • TMR7
	TMR8 TMR9
Section 9.0 "Oscillator Configuration"	Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1). Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2).
	Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3). Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4).
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the VREFL references in the ADC1 module block diagram (see Figure 20-1).
Section 21.0 "Special Features"	Added a new paragraph and removed the third paragraph in Section 21.1 "Configuration Bits".
	Added the column "RTSP Effects" to the Configuration Bits Descriptions (see Table 21-2).