

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp510a-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Pin Name	Pin Type	Buffer Type	Description
AN0-AN31	I	Analog	Analog input channels.
AVDD	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI CLKO	I O	ST/CMOS	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX C1TX C2RX	 0 	ST — ST	ECAN1 bus receive pin. ECAN1 bus transmit pin. ECAN2 bus receive pin.
C2TX	0	_	ECAN2 bus transmit pin.
PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3	I/O I I/O I I/O I	ST ST ST ST ST ST	Data I/O pin for programming/debugging communication channel 1. Clock input pin for programming/debugging communication channel 1. Data I/O pin for programming/debugging communication channel 2. Clock input pin for programming/debugging communication channel 2. Data I/O pin for programming/debugging communication channel 3. Clock input pin for programming/debugging communication channel 3.
IC1-IC8	I	ST	Capture inputs 1 through 8.
INT0 INT1 INT2 INT3 INT4		ST ST ST ST ST	External interrupt 0. External interrupt 1. External interrupt 2. External interrupt 3. External interrupt 4.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device
OCFA OCFB OC1-OC8	 0	ST ST —	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare Fault B input (for Compare Channels 5, 6, 7 and 8). Compare outputs 1 through 8.
OSC1 OSC2	I I/O	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
RA0-RA7 RA9-RA10 RA12-RA15	I/O I/O I/O	ST ST ST	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.
RC1-RC4 RC12-RC15	I/O I/O	ST ST	PORTC is a bidirectional I/O port.
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.
RE0-RE7	I/O	ST	PORTE is a bidirectional I/O port.
RF0-RF8 RF12-RF13	I/O	ST	PORTF is a bidirectional I/O port.
RG0-RG3 RG6-RG9 RG12-RG15	1/0 1/0 1/0	ST ST ST	PORTG is a bidirectional I/O port.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input P = Powe O = Output I = Input

4.2 Data Address Space

The PIC24HJXXXGPX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 and Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.4.3 "Reading Data from Program Memory Using Program Space Visibility").

PIC24HJXXXGPX06A/X08A/X10A devices implement up to 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the PIC24HJXXXGPX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the Least Significant bit (LSb) of any EA to determine which byte to select. The selected byte is placed onto the Least Significant Byte (LSB) of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte (MSB) is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the Most Significant Byte of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the PIC24HJXXXGPX06A/X08A/X10A core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 4-1 through Table 4-33.

Note:	The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pipeut diagrams for device specific
	information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

IADLE 4	19.	ECAN	I KEGIS					$\mathbf{IN} = 0 \mathbf{F}$		24ПЈЛЛ	VGE 200	DAISIUF	VOIUAL					
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	e definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CO N	0430	TXEN1	TX ABT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	રા<1:0>	0000
C1TR23CO N	0432	TXEN3	TX ABT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	રા<1:0>	0000
C1TR45CO N	0434	TXEN5	TX ABT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	२।<1:0>	0000
C1TR67CO N	0436	TXEN7	TX ABT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	રા<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	२।<1:0>	XXXX
C1RXD	0440								Recieved	Data Word								xxxx
C1TXD	0442								Transmit I	Data Word								xxxx

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See definit	ion when V	VIN = x							
C1BUFPNT1	0420		F3BF	°<3:0>			F2BF	P<3:0>		F1BP<3:0>				F0BP<3:0>				
C1BUFPNT2	0422		F7BP<3:0> F6BP<3:0>							F5BP<3:0>			F4BP<3:0>				0000	
C1BUFPNT3	0424		F11BI	P<3:0>		F10BP<3:0>			F9BP<3:0>			F8BP<3:0>				0000		
C1BUFPNT4	0426		F15BI	><3:0>		F14BP<3:0>				F13BP<3:0>			F12BP<3:0>				0000	
C1RXM0SID	0430		SID<10:3>						SID<2:0>		_	MIDE	—	EID<1	7:16>	xxxx		
C1RXM0EID	0432				EID<	15:8>				EID<7:0>						xxxx		
C1RXM1SID	0434				SID<	10:3>				SID<2:0> —			MIDE	_	EID<1	7:16>	xxxx	
C1RXM1EID	0436				EID<	15:8>				EID<7:0>							xxxx	
C1RXM2SID	0438				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<1	7:16>	xxxx
C1RXM2EID	043A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440	SID<10:3>					SID<2:0> —			EXIDE	_	EID<1	7:16>	xxxx				
C1RXF0EID	0442		EID<15:8>					EID<7:0>						xxxx				
C1RXF1SID	0444				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx

© 2009-2012 Microchip Technology Inc.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Reset Type	Clock Source SYSRST Delay		System Clock Delay	FSCM Delay	See Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—		1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
MCLR	Any Clock	TRST	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any clock	Trst	—	-	3
Illegal Opcode	Any Clock	Trst	—	-	3
Uninitialized W	Any Clock	Trst			3
Trap Conflict	Any Clock	TRST		_	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.

- 3: TRST = Internal state Reset time (20 μs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL lock time (20 μ s nominal).
- **6:** TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the Reset signal is released:

- · The oscillator circuit has not begun to oscillate
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used)
- The PLL has not achieved a lock (if PLL is used)

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when the Reset signal is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—		C2IP<2:0>	
bit 7							bit 0
Lagandi							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as '0'
----------	----------------------------

- C2IP<2:0>: ECAN2 Event Interrupt Priority bits
 - 111 = Interrupt is priority 7 (highest priority interrupt)
 - •

bit 2-0

- •
- 001 = Interrupt is priority 1
- 000 = Interrupt source is disabled

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—		—	—	—		—				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—		DMA5IP<2:0>		—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-7	Unimplement	ted: Read as '	0'								
bit 6-4	DMA5IP<2:0>	: DMA Chann	el 5 Data Tran	sfer Complete	Interrupt Priorit	y bits					
	111 = Interrup	ot is priority 7 (I	highest priority	/ interrupt)							
	•										

001 = Interrupt is priority 1 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0						
—	—	—	—		ILR	<3:0>							
bit 15	·						bit 8						
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0						
				VECNUM<6:0	>								
bit 7	•						bit 0						
Legend:													
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown									
L													
bit 15-12	Unimplement	ted: Read as '	0'										
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits									
	1111 = CPU I	nterrupt Priorit	y Level is 15										
	•												
	•												
	0001 = CPU li	0001 = CPU Interrupt Priority Level is 1											
	0000 = CPU I	nterrupt Priorit	y Level is 0										
bit 7	Unimplement	ted: Read as '	0'										
bit 6-0	VECNUM<6:0	>: Vector Num	ber of Pendir	ng Interrupt bits	;								
	1111111 = In	terrupt Vector	pending is nu	mber 135									
	•												
	•												
	0000001 = In	terrupt Vector	pending is nu	mber 9									
	0000000 = In	terrupt Vector	pending is nu	mber 8									

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
		COSC<2:0>				NOSC<2:0> ⁽²⁾	
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOC	ж —	LOCK	—	CF	—	LPOSCEN	OSWEN
bit 7							bit 0
Legend:		v = Value set :	from Configur	ation bits on P	POR	C = Clear only	bit
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit. rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	wn
]
bit 15	Unimplemen	ted: Read as 'd	כ'				
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only	/)		
	111 = Fast R	C oscillator (FR	RC) with Divide	e-by-N			
	110 = Fast R	C oscillator (FR	C) with Divide	e-by-16			
	101 = Low-P0 100 = Second	ower RC oscilla darv oscillator (Sosc)				
	011 = Primar	y oscillator (XT,	HS, EC) with	I PLL			
	010 = Primar	y oscillator (XT,	HS, EC)				
	001 = Fast R	C Oscillator (FF	RC) with Divid	e-by-N and PL	L (FRCDIVN	+ PLL)	
hit 11	000 = Fast R	C oscillator (FR	(C) ,'				
DIL II		Now Oppillator	Soloction bits	(2)			
DIL 10-0	111 = Fast R(C oscillator (FR	2C) with Divide	≏-hv-N			
	110 = Fast R	C oscillator (FR	(C) with Divide	e-by-16			
	101 = Low-Po	ower RC oscilla	tor (LPRC)	2			
	100 = Second	dary oscillator (Sosc)	5			
	011 = Primar	y oscillator (X I, v oscillator (XT	HS, EC) With	I PLL			
	001 = Fast R	C Oscillator (FF	RC) with Divid	e-by-N and PL	LL (FRCDIVN	+ PLL)	
	000 = Fast R	C oscillator (FR	RC)	,	,	,	
bit 7	CLKLOCK: C	Clock Lock Enal	ble bit				
	1 = If (FCKSI	M0 = 1), the clo	ock and PLL c	onfigurations a	are locked		
	If (FCKSI	M0 = 0), the clo d PLL selection	ock and PLL c	configurations i	may be modifie	ed	
hit 6	Unimplemen	ted: Read as '	וס מוכי ווטנ וטכא ז'	teu, conngurat	ions may be n	loumeu	
bit 5		ock Status bit (read-only)				
bit o	1 = Indicates	that PLL is in I	ock. or PLL st	tart-up timer is	satisfied		
	0 = Indicates	that PLL is out	t of lock, start-	up timer is in	progress or PL	L is disabled	
bit 4	Unimplemen	ted: Read as 'd	כי				
bit 3	CF: Clock Fai	il Detect bit (rea	ad/clear by ap	plication)			
	1 = FSCM ha	as detected clo	ck failure				
h # 0		as not detected	CIOCK TAILURE				
DIT 2	Unimplemen	tea: Read as '	J				
Note 1:	Writes to this regis "dsPIC33F/PIC24F	ter require an u H Family Refere	unlock sequen ence Manual"	ice. Refer to S for details.	ection 7. "Os	cillator" (DS7018	6) in the
2:	Direct clock switch This applies to cloc	es between any ck switches in e	y primary osci either directior	llator mode wit n. In these inst	th PLL and FR ances, the app	CPLL mode are no blication must swit	ot permitted. ch to FRC

- mode as a transition clock source between the two PLL modes.
- 3: This register is reset only on a Power-on Reset (POR).

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	0 = Write - indicates data transfer is output from slave 0 = Write - indicates data transfer is input to slave Hardware set or clear after reception of I2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0	
	_	CSIDL	ABAT			REQOP<2:0>	-	
bit 15			I		I		bit 8	
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0	
(OPMODE<2:0>			CANCAP		—	WIN	
bit 7					•		bit 0	
Legend:		r = Bit is Rese	erved					
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own	
bit 15-14 bit 13	Unimplement CSIDL: Stop 1 = Discontinu 0 = Continue	ted: Read as ' in Idle Mode b ue module operat	^{0'} it ration when d	evice enters ld	lle mode			
hit 12		All Pending Tra	insmissions h	it				
51(12)	1 = Signal all 0 = Module wi	transmit buffer	s to abort trar when all trans	nsmission smissions are a	aborted			
bit 11	Reserved: Do	o not use						
bit 10-8	REQOP<2:0>	Request Op	eration Mode	bits				
	<pre>111 = Set Listen All Messages mode 110 = Reserved - do not use 101 = Reserved - do not use 100 = Set Configuration mode 011 = Set Listen Only Mode 010 = Set Loopback mode 001 = Set Disable mode</pre>							
bit 7-5	OPMODE<2:	0>: Operation	Mode bits					
	<pre>111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode</pre>							
bit 4	Unimplement	ted: Read as '	0'					
bit 3	CANCAP: C/	AN Message R	eceive Timer	Capture Event	t Enable bit			
	1 = Enable inp 0 = Disable C	out capture bas AN capture	sed on CAN n	nessage receiv	/e			
bit 2-1	Unimplement	ted: Read as '	0'					
bit 0	WIN: SFR Ma 1 = Use filter 0 = Use buffer	ap Window Se window r window	lect bit					

REGISTER 19-1: CiCTRL1: ECAN™ MODULE CONTROL REGISTER 1

REGISTER 19-4: CIFCTRL: ECAN™ MODULE FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
	DMABS<2:0>		—	—	—	_	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—		—			FSA<4:0>			
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable I	oit	U = Unimplei	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
	111 = Reserved; do not use 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM							
Dit 12-5	Unimpleme	nted: Read as ()' 					
טונ 4-ט	• • • • • • • • • • • • • •	B1 buffer B1 buffer B1 buffer B0 buffer	with Butter t	ກເຮ				

REGISTER 19-13: CIBUFPNT2: ECAN™ MODULE FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BF	F7BP<3:0>		F6B		P<3:0>	
bit 15							bit 8
DAVA	DMU O	DMUO	D 444.0	DAM 0	D 444.0	DMUO	D 444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F2BF	><3:0>			F4B	P<3:0>	
bit /							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F7BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 7 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F6BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 6 Hits bits uffer 4			
	•						
	•						
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 7-4	F5BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte າ RX FIFO bເ າ RX Buffer 1	er 5 Hits bits ıffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F4BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 4 Hits bits uffer 4			
	• 0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 מ RX Buffer 0				

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 16. "Analog-to-Digital Converter (ADC)" (DS70183), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to 32 Analog-to-Digital input channels. These devices also have up to 2 Analog-to-Digital converter modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Two result alignment options (signed/unsigned)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the Analog-to-Digital Converter can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device.

A block diagram of the Analog-to-Digital Converter is shown in Figure 20-1.

20.2 Analog-to-Digital Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on the ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit

2.

b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, the DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

21.0 SPECIAL FEATURES

- **Note 1:** This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "CodeGuard™ Security" 23. (DS70199), Section 24. "Programming and Diagnostics" (DS70207), and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

PIC24HJXXXGPX06A/X08A/X10A devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming™ (ICSP™) programming capability
- In-Circuit Emulation

Address Name Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 6 Bit 5 RBS<1:0> BSS<2:0> BWRP 0xF80000 FBS SSS<2:0> 0xF80002 FSS RSS<1:0> SWRP 0xF80004 FGS GSS<1:0> GWRP 0xF80006 FOSCSEL Reserved⁽²⁾ FNOSC<2:0> **IESO** 0xF80008 FOSC FCKSM<1:0> OSCIOFNC POSCMD<1:0> ____ PLLKEN(3) WDTPOST<3:0> 0xF8000A FWDT FWDTEN WINDIS **WDTPRE** Reserved⁽⁴⁾ 0xF8000C FPOR FPWRT<2:0> ____ Reserved⁽¹⁾ 0xF8000E FICD **JTAGEN** ICS<1:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bits, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

- 2: When read, this bit returns the current programmed value.
- **3:** This bit is unimplemented on PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices and reads as '0'.
- 4: These bits are reserved and always read as '1'.

21.1 Configuration Bits

PIC24HJXXXGPX06A/X08A/X10A devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25. "Device Configuration"** (DS70194) of the *"dsPIC33F/PIC24H Family Reference Manual"*, for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 21-1.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 21-2.

Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 24-29	—	—	0,1	0,1	0,1		
10 MHz	—	Table 24-30	—	1	0,1	1		
10 MHz	—	Table 24-31	—	0	0,1	1		
15 MHz	—	—	Table 24-32	1	0	0		
11 MHz	—	—	Table 24-33	1	1	0		
15 MHz	_	_	Table 24-34	0	1	0		
11 MHz	_	_	Table 24-35	0	0	0		

FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS			Standar (unless Operatir	tandard Operating Conditions: 3.0V to 3.6VInless otherwise stated)perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
		Cloc	k Parame	ters					
AD50	TAD	ADC Clock Period	76		—	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—		
	Conversion Rate								
AD55	tCONV	Conversion Time	_	12 Tad	_	_	—		
AD56	FCNV	Throughput Rate			1.1	Msps	—		
AD57	TSAMP	Sample Time	2 Tad		—	—	—		
		Timin	ig Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad	—	Auto-Convert Trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	—	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD	—	_	_		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μS	—		

TABLE 24-43: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 24-44: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min. Typ Max. Units				Conditions		
DM1a	DMA Read/Write Cycle Time	_	—	2 TCY	ns	This characteristic applies to PIC24HJ256GPX06A/X08A/X10A devices only.		
DM1b	DMA Read/Write Cycle Time	_	—	1 Tcy	ns	This characteristic applies to all devices with the exception of the PIC24HJ256GPX06A/X08A/X10A.		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Revision Level — Tape and Reel Fl Temperature Rar Package — Pattern —	mark — amily – y Size (ag (if a nge —	PIC 24 HJ 256 GP6 10 A T I/PT - XXX	
Architecture:	24	16-bit Microcontroller	
Flash Memory Family:	HJ	Flash program memory, 3.3V, High-speed	
Product Group:	GP2 GP3 GP5 GP6	General purpose family General purpose family General purpose family General purpose family	
Pin Count:	06 10	64-pin 100-pin	
Temperature Range:	I E H	-40°C to+85°C(Industrial) -40°C to+125°C(Extended) -40°C to+150°C(High)	
Package:	PT PF MR	10x10 or 12x12 mm TQFP (Thin Quad Flatpack) 14x14 mm TQFP (Thin Quad Flatpack) 9x9x0.9 mm QFN (Thin Quad Flatpack)	
Pattern:	Three-c (blank c ES	۲۲P, SQTP, Code or Special Requirements vise) Engineering Sample	