

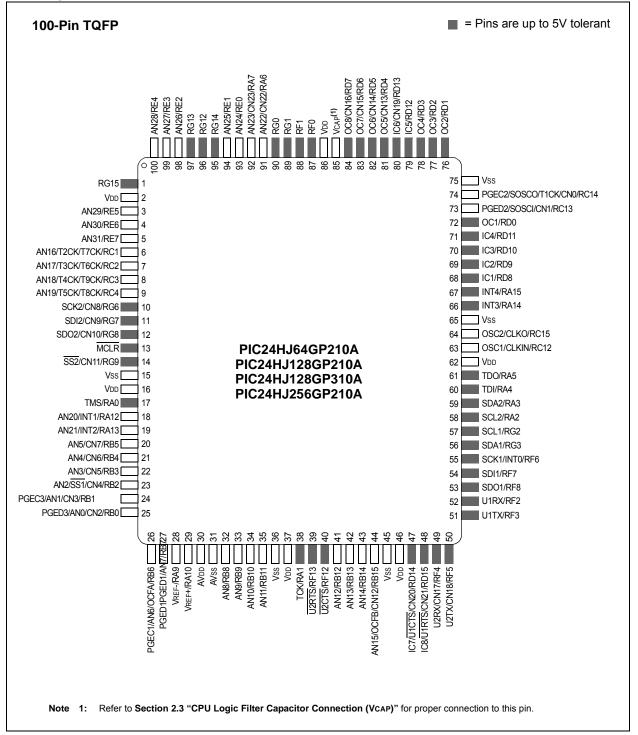
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Becano	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp510a-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

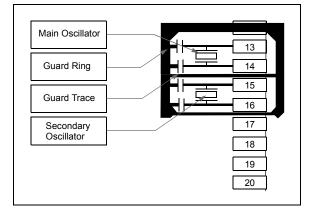
2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and requirements timing information in the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- *"Using MPLAB[®] REAL ICE™"* (poster) DS51749

2.6 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

3.4 Arithmetic Logic Unit (ALU)

The PIC24HJXXXGPX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register</u>. The <u>C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The PIC24HJXXXGPX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.4.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.4.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.4.3 MULTI-BIT DATA SHIFTER

The multi-bit data shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either a working register or a memory location.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

TABLE 4-17: DMA REGISTER MAP

File Name	-17: Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
																		Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	_				_	AMOD		—	—	MODE	<1:0>	0000
DMA0REQ	0382	FORCE										0000						
DMA0STA	0384									TA<15:0>								0000
DMA0STB	0386									TB<15:0>								0000
DMA0PAD	0388							r	P	AD<15:0>								0000
DMA0CNT	038A	_		—	—	—	—						<9:0>	-		r		0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_			_		AMOD		_	—	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	—	—		—	—			—			I	RQSEL<6:0	>			0000
DMA1STA	0390		STA<15:0>												0000			
DMA1STB	0392								S	TB<15:0>								0000
DMA1PAD	0394							1	P	AD<15:0>								0000
DMA1CNT	0396	—	—	—	—	—	—					CNT	<9:0>	T				0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	_			_	_	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	—	—		—	—			—				RQSEL<6:0	>			0000
DMA2STA	039C								S	TA<15:0>								0000
DMA2STB	039E								S	TB<15:0>								0000
DMA2PAD	03A0								Р	AD<15:0>								0000
DMA2CNT	03A2	—	—	—	—	—	—					CNT	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	—	—	—	—	—	—	—	—			I	RQSEL<6:0	>			0000
DMA3STA	03A8								S	TA<15:0>								0000
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC								Р	AD<15:0>								0000
DMA3CNT	03AE	-	-	_	_	_	_					CNT	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA4STA	03B4								S	TA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								Р	AD<15:0>								0000
DMA4CNT	03BA	_	_	_	—	_	_					CNT	<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	_	_	—	_	_	_	_	_		•	I	RQSEL<6:0	>			0000
DMA5STA	03C0								S	TA<15:0>								0000
DMA5STB	03C2								S	TB<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 7-1: INTERRUPT VECTORS								
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source				
8	0	0x000014	0x000114	INT0 – External Interrupt 0				
9	1	0x000016	0x000116	IC1 – Input Capture 1				
10	2	0x000018	0x000118	OC1 – Output Compare 1				
11	3	0x00001A	0x00011A	T1 – Timer1				
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0				
13	5	0x00001E	0x00011E	IC2 – Input Capture 2				
14	6	0x000020	0x000120	OC2 – Output Compare 2				
15	7	0x000022	0x000122	T2 – Timer2				
16	8	0x000024	0x000124	T3 – Timer3				
17	9	0x000026	0x000126	SPI1E – SPI1 Error				
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done				
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver				
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter				
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1				
22	14	0x000030	0x000130	DMA1 – DMA Channel 1				
23	15	0x000032	0x000132	Reserved				
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events				
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events				
26	18	0x000038	0x000138	Reserved				
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt				
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1				
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2				
30	22	0x000040	0x000140	IC7 – Input Capture 7				
31	23	0x000042	0x000142	IC8 – Input Capture 8				
32	24	0x000044	0x000144	DMA2 – DMA Channel 2				
33	25	0x000046	0x000146	OC3 – Output Compare 3				
34	26	0x000048	0x000148	OC4 – Output Compare 4				
35	27	0x00004A	0x00014A	T4 – Timer4				
36	28	0x00004C	0x00014C	T5 – Timer5				
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2				
38	30	0x000050	0x000150	U2RX – UART2 Receiver				
39	31	0x000052	0x000152	U2TX – UART2 Transmitter				
40	32	0x000054	0x000154	SPI2E – SPI2 Error				
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done				
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready				
43	35	0x00005A	0x00015A	C1 – ECAN1 Event				
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3				
45	37	0x00005E	0x00015E	IC3 – Input Capture 3				
46	38	0x000060	0x000160	IC4 – Input Capture 4				
47	39	0x000062	0x000162	IC5 – Input Capture 5				
48	40	0x000064	0x000164	IC6 – Input Capture 6				
49	41	0x000066	0x000166	OC5 – Output Compare 5				
50	42	0x000068	0x000168	OC6 – Output Compare 6				
51	43	0x00006A	0x00016A	OC7 – Output Compare 7				
52	44	0x00006C	0x00016C	OC8 – Output Compare 8				
53	45	0x00006E	0x00016E	Reserved				

TABLE 7-1: INTERRUPT VECTORS

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
—	_	—	—		— CNT<9:8> ⁽²⁾							
bit 15	bit 15 bit 8											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	CNT<7:0> ⁽²⁾											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - 2: Number of DMA transfers = CNT<9:0> + 1.

bit 7

bit 0

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD		_	_	_
bit 15	- I		1				bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		—	—	—	—	I2C2MD	AD2MD ⁽¹⁾
bit 7							bit (
Logondi							
Legend: R = Readal	ble bit	W = Writable	hit	U = Unimplem	ented bit rea	ad as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
							-
bit 15	T9MD: Timer	9 Module Disab	ole bit				
	1 = Timer9 m	odule is disable	ed				
	0 = Timer9 m	odule is enable	d				
bit 14	T8MD: Timer	8 Module Disab	ole bit				
		odule is disable					
		odule is enable					
bit 13	T7MD: Timer	7 Module Disab	ole bit				
	-	odule is disable					
		odule is enable	-				
bit 12		6 Module Disat					
		odule is disable odule is enable					
bit 11-2		ted: Read as '					
bit 1	•	2 Module Disat					
		lule is disabled					
		lule is enabled					
bit 0		2 Module Disab	le bit ⁽¹⁾				
		ule is disabled					
	$0 = AD2 \mod$						

Note 1: The PCFGx bits will have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the "**Pin Diagrams**" section for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The use of the ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the Analog-to-Digital port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	In devices with two ADC modules, if the
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the PIC24HJXXXGPX06A/X08A/X10A devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	OxFF00, WO	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON		TSIDL		—		—							
bit 15							bit						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0						
0-0	TGATE		S<1:0>	T32	0-0	TCS ⁽¹⁾	0-0						
 bit 7	IGAIE	TCKP	5<1.0>	132	_	1030	bit						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'							
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own						
bit 15	TON: Timerx	On bit											
	When T32 = 1	L:											
	1 = Starts 32- 0 = Stops 32-												
		When $T32 = 0$:											
	1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx												
bit 14			٠́ ()'										
bit 13	Unimplemented: Read as '0' TSIDL: Stop in Idle Mode bit												
	•	ue module ope	eration when d	evice enters Idl de	e mode								
bit 12-7	Unimplemen	-											
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit												
	When TCS = 1:												
	This bit is ignored.												
	When TCS = 0: 1 = Gated time accumulation enabled												
	0 = Gated time accumulation disabled												
bit 5-4	TCKPS<1:0>: Timerx Input Clock Prescale Select bits												
	11 = 1:256												
	10 = 1:64												
	01 = 1:8 00 = 1:1												
bit 3	T32: 32-bit Timer Mode Select bit												
	1 = Timerx an 0 = Timerx an												
bit 2	Unimplemen	-											
bit 1	TCS: Timerx												
	1 = External c 0 = Internal cl	clock from pin		rising edge)									
		· · /											

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽²⁾
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - •
 - •
 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽²⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - **2:** Do not set both Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN					
bit 15				1	1		bit 8					
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0					
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF					
bit 7	·				·	÷	bit (
Legend:		C = Clear onl	y bit									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-14	Unimplomon	ted. Dood oo '	0'									
bit 13	-	ited: Read as ' mitter in Error		hit								
bit 15		er is in Bus Of		bit								
	0 = Transmitt	er is not in Bus	Off state									
bit 12		mitter in Error		sive bit								
		er is in Bus Pa		-								
bit 11		er is not in Bus iver in Error Sta										
		is in Bus Pass		vebil								
	0 = Receiver	is not in Bus P	assive state									
bit 10	TXWAR: Transmitter in Error State Warning bit											
	1 = Transmitter is in Error Warning state											
bit 9	0 = Transmitter is not in Error Warning state											
DIL 9	RXWAR: Receiver in Error State Warning bit 1 = Receiver is in Error Warning state											
	0 = Receiver is not in Error Warning state											
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit											
			er or receiver is in Error Warning state									
h :+ 7		er or receiver i		•								
bit 7		IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred											
bit 6	WAKIF: Bus	Wake-up Activ	ity Interrupt F	lag bit								
	1 = Interrupt request has occurred											
L:1 F	•	request has no										
bit 5				ources in Clin	F<13:8> regist	ter)						
		request has oc request has no										
bit 4	•	ted: Read as '										
bit 3	•	Almost Full In		it								
bit 5	1 = Interrupt	request has oc	curred									
	0 = Interrupt I	roquest has no	t occurred									
		•			RBOVIF: RX Buffer Overflow Interrupt Flag bit							
bit 2		Buffer Overflo	w Interrupt Fla	ag bit								
bit 2	1 = Interrupt	Buffer Overflor request has oc	w Interrupt Fla curred	ag bit								
	1 = Interrupt	Buffer Overflo request has oc request has no	w Interrupt Fla curred t occurred	ag bit								
bit 2 bit 1	1 = Interrupt i 0 = Interrupt i RBIF: RX Bu	Buffer Overflor request has oc	w Interrupt Fla curred t occurred ag bit	ag bit								
bit 1	1 = Interrupt (0 = Interrupt (RBIF: RX But 1 = Interrupt (0 = Interrupt (Buffer Overflo request has oc request has no ffer Interrupt Fl request has oc request has no	w Interrupt Fla curred t occurred ag bit curred t occurred	ag bit								
	1 = Interrupt i 0 = Interrupt i RBIF: RX Bu 1 = Interrupt i 0 = Interrupt i TBIF: TX Buf	Buffer Overflo request has oc request has no ffer Interrupt Fl request has oc request has no fer Interrupt Fl	w Interrupt Fla curred t occurred ag bit curred t occurred ag bit	ag bit								
bit 1	1 = Interrupt i 0 = Interrupt i RBIF: RX Bu 1 = Interrupt i 0 = Interrupt i TBIF: TX Buf 1 = Interrupt i	Buffer Overflo request has oc request has no ffer Interrupt Fl request has oc request has no	w Interrupt Fla curred t occurred ag bit curred t occurred ag bit curred	ag bit								

20.6 ADC Control Registers

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2)

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	ADDMABM		AD12B	FORM<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

Legend:	HC = Cleared by hardware HS = Set by hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	ADON: ADC Operating Mode bit
	1 = ADC module is operating
	0 = ADC module is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer
	 DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-Bit or 12-Bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)
	00 = Integer (DOUT = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = Reserved 101 = Reserved
	100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion
	011 = Reserved
	010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion
	001 = Active transition on INTO pin ends sampling and starts conversion
	000 = Clearing sample bit ends sampling and starts conversion

REGISTER 20-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3,4)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG31	PCFG31 PCFG30 F		PCFG28	PCFG27	PCFG26	PCFG25	PCFG24
bit 15	-						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	/W-0 R/W-0		R/W-0 R/W-0 R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16		
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PCFG<31:16>:** ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

21.5 JTAG Interface

PIC24HJXXXGPX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

Note: For further information, refer to the dsPIC33F/PIC24H Family Reference Manual", Section 24. "Programming and Diagnostics" (DS70207), which is available from the Microchip web site (www.microchip.com).

21.6 Code Protection and CodeGuard[™] Security

The PIC24H product families offer advanced implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual PIC24H implemented. The following sections provide an overview these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: For further information, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 23. "CodeGuard™ Security" (DS70239), which is available from the Microchip web site (www.microchip.com).

21.7 In-Circuit Serial Programming Programming Capability

PIC24HJXXXGPX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) document for details about ICSP programming capability.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

21.8 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

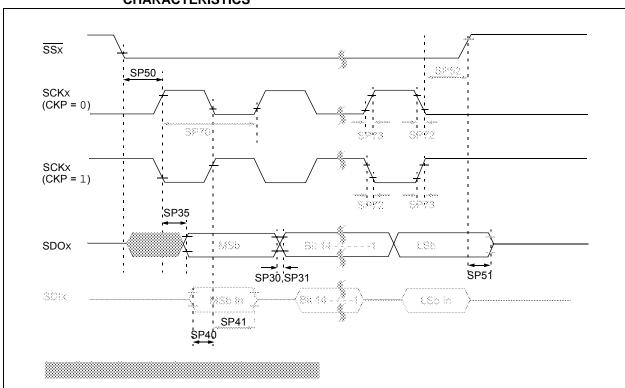
- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP programming capability connections to MCLR, VDD, VSS and the PGEDx/ PGECx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

TABLE 24-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industr} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extend} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_		11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	_	—		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	Ι	—	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	—	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

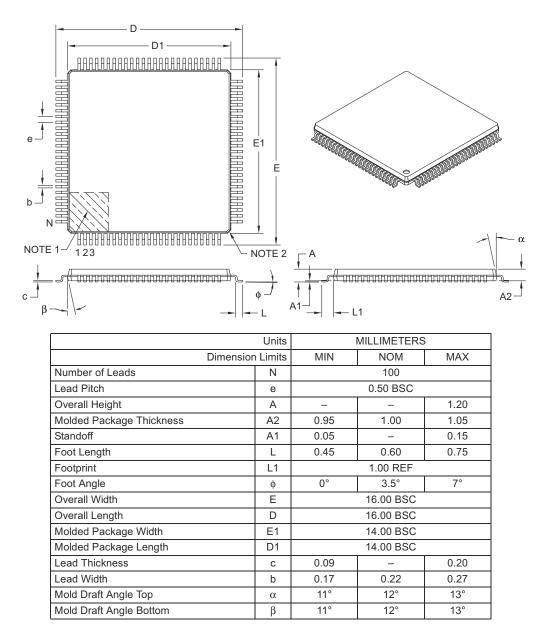

4: Assumes 50 pF load on all SPIx pins.

FIGURE 24-15: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B