

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                              |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 40 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                       |
| Number of I/O              | 85                                                                               |
| Program Memory Size        | 128KB (43K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 8K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 32x10b/12b                                                                   |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 100-TQFP                                                                         |
| Supplier Device Package    | 100-TQFP (14x14)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp510at-i-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| TABLE 4-2  | U: E | CANTI  | REGIS     |        |        | IN C10 | IRL1.    | VIN = 1  | L FOR P            | IC24HJ                        | XXXGP5   | 06A/51 | UA/61UA |       | ES ONL |       | TINUE | <b>D</b> )    |
|------------|------|--------|-----------|--------|--------|--------|----------|----------|--------------------|-------------------------------|----------|--------|---------|-------|--------|-------|-------|---------------|
| File Name  | Addr | Bit 15 | Bit 14    | Bit 13 | Bit 12 | Bit 11 | Bit 10   | Bit 9    | Bit 8              | Bit 7                         | Bit 6    | Bit 5  | Bit 4   | Bit 3 | Bit 2  | Bit 1 | Bit 0 | All<br>Resets |
| C1RXF1EID  | 0446 |        |           |        | EID    | <15:8> |          |          |                    | EID<7:0>                      |          |        |         |       |        |       | xxxx  |               |
| C1RXF2SID  | 0448 |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | _       | EXIDE |        | EID<1 | 7:16> | xxxx          |
| C1RXF2EID  | 044A |        |           |        | EID    | <15:8> |          |          |                    | EID<7:0>                      |          |        |         |       |        | xxxx  |       |               |
| C1RXF3SID  | 044C |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | _       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF3EID  | 044E |        |           |        | EID    | <15:8> |          |          |                    | EID<7:0>                      |          |        |         |       |        | xxxx  |       |               |
| C1RXF4SID  | 0450 |        |           |        | SID    | <10:3> |          |          |                    | SID<2:0> — EXIDE — EID<1      |          |        |         | 7:16> | xxxx   |       |       |               |
| C1RXF4EID  | 0452 |        |           |        | EID    | <15:8> |          |          |                    |                               |          |        | EID<    | 7:0>  |        |       |       | xxxx          |
| C1RXF5SID  | 0454 |        | SID<10:3> |        |        |        |          |          | SID<2:0> — EXIDE — |                               |          | —      | EID<1   | 7:16> | xxxx   |       |       |               |
| C1RXF5EID  | 0456 |        | EID<15:8> |        |        |        |          |          |                    |                               |          | EID<   | 7:0>    |       |        |       | xxxx  |               |
| C1RXF6SID  | 0458 |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | _       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF6EID  | 045A |        | EID<15:8> |        |        |        | EID<7:0> |          |                    |                               |          | xxxx   |         |       |        |       |       |               |
| C1RXF7SID  | 045C |        | SID<10:3> |        |        |        |          | SID<2:0> |                    | _                             | EXIDE    |        | EID<1   | 7:16> | xxxx   |       |       |               |
| C1RXF7EID  | 045E |        | EID<15:8> |        |        |        |          |          |                    | EID<                          | 7:0>     | •      | •       |       | xxxx   |       |       |               |
| C1RXF8SID  | 0460 |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | —       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF8EID  | 0462 |        |           |        | EID    | <15:8> |          |          |                    |                               |          |        | EID<    | 7:0>  |        |       |       | xxxx          |
| C1RXF9SID  | 0464 |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | —       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF9EID  | 0466 |        |           |        | EID    | <15:8> |          |          |                    | EID<7:0>                      |          |        |         |       | xxxx   |       |       |               |
| C1RXF10SID | 0468 |        |           |        | SID    | <10:3> |          |          |                    | SID<2:0> — EXIDE — EID<17:16> |          |        |         |       | 7:16>  | xxxx  |       |               |
| C1RXF10EID | 046A |        |           |        | EID    | <15:8> |          |          |                    | EID<7:0>                      |          |        |         |       |        | xxxx  |       |               |
| C1RXF11SID | 046C |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | _       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF11EID | 046E |        |           |        | EID    | <15:8> |          |          |                    |                               |          |        | EID<    | 7:0>  |        |       |       | xxxx          |
| C1RXF12SID | 0470 |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | —       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF12EID | 0472 |        |           |        | EID    | <15:8> |          |          |                    |                               |          |        | EID<    | 7:0>  |        |       |       | xxxx          |
| C1RXF13SID | 0474 |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | —       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF13EID | 0476 |        |           |        | EID    | <15:8> |          |          |                    |                               |          |        | EID<    | 7:0>  |        |       |       | xxxx          |
| C1RXF14SID | 0478 |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | —       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF14EID | 047A |        |           |        | EID    | <15:8> |          |          |                    |                               |          |        | EID<    | 7:0>  |        |       |       | xxxx          |
| C1RXF15SID | 047C |        |           |        | SID    | <10:3> |          |          |                    |                               | SID<2:0> |        | —       | EXIDE | —      | EID<1 | 7:16> | xxxx          |
| C1RXF15EID | 047E |        |           |        | EID    | <15:8> |          |          |                    |                               |          |        | EID<    | 7:0>  |        | -     |       | xxxx          |

#### ONILY (CONTINUED) DICOALLINNY ODEACA/E40A/C40A DEVICES

Legend:

© 2009-2012 Microchip Technology Inc.

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

| U-0             | U-0                                      | U-0              | U-0                | U-0              | U-0              | U-0             | U-0   |  |  |  |  |
|-----------------|------------------------------------------|------------------|--------------------|------------------|------------------|-----------------|-------|--|--|--|--|
| —               | —                                        | —                | _                  |                  | —                | —               | —     |  |  |  |  |
| bit 15          |                                          |                  |                    |                  |                  |                 | bit 8 |  |  |  |  |
|                 |                                          |                  |                    |                  |                  |                 |       |  |  |  |  |
| R/W-0           | R/W-0                                    | R/W-0            | R/W-0              | U-0              | R/W-0            | R/W-0           | U-0   |  |  |  |  |
| C2TXIE          | C1TXIE                                   | DMA7IE           | DMA6IE             | —                | U2EIE            | U1EIE           | —     |  |  |  |  |
| bit 7           |                                          |                  |                    |                  |                  |                 | bit 0 |  |  |  |  |
|                 |                                          |                  |                    |                  |                  |                 |       |  |  |  |  |
| Legend:         |                                          |                  |                    |                  |                  |                 |       |  |  |  |  |
| R = Readable    | bit                                      | W = Writable     | bit                | U = Unimpler     | mented bit, read | as '0'          |       |  |  |  |  |
| -n = Value at F | POR                                      | '1' = Bit is set |                    | '0' = Bit is cle | eared            | x = Bit is unkr | IOWN  |  |  |  |  |
|                 |                                          | (ad. Daad as (   | o'                 |                  |                  |                 |       |  |  |  |  |
| DIT 15-8        |                                          | ted: Read as     |                    |                  | - h:t            |                 |       |  |  |  |  |
| DIT /           | CZIXIE: ECA                              | NZ Transmit D    | ata Request I      | nterrupt Enabl   | e dit            |                 |       |  |  |  |  |
|                 | $\perp$ = Interrupt r<br>0 = Interrupt r | request enabled  | a<br>abled         |                  |                  |                 |       |  |  |  |  |
| bit 6           | C1TXIE: ECA                              | N1 Transmit D    | ata Request I      | nterrupt Enabl   | e bit            |                 |       |  |  |  |  |
|                 | 1 = Interrupt r                          | equest enable    | d .                |                  |                  |                 |       |  |  |  |  |
|                 | 0 = Interrupt r                          | equest not ena   | abled              |                  |                  |                 |       |  |  |  |  |
| bit 5           | DMA7IE: DM                               | A Channel 7 D    | ata Transfer C     | Complete Enab    | le Status bit    |                 |       |  |  |  |  |
|                 | 1 = Interrupt request enabled            |                  |                    |                  |                  |                 |       |  |  |  |  |
|                 | 0 = Interrupt r                          | request not ena  | abled              |                  |                  |                 |       |  |  |  |  |
| bit 4           | DMA6IE: DM                               | A Channel 6 D    | ata Transfer C     | Complete Enab    | ole Status bit   |                 |       |  |  |  |  |
|                 | 1 = Interrupt r                          | request enable   | d<br>bled          |                  |                  |                 |       |  |  |  |  |
| hit 3           | Unimplemen                               | ted: Read as '   | 0'                 |                  |                  |                 |       |  |  |  |  |
| bit 2           |                                          | 2 Error Interru  | ∘<br>nt Enable bit |                  |                  |                 |       |  |  |  |  |
| Dit 2           | 1 = Interrupt r                          | request enable   | d                  |                  |                  |                 |       |  |  |  |  |
|                 | 0 = Interrupt r                          | request not ena  | abled              |                  |                  |                 |       |  |  |  |  |
| bit 1           | U1EIE: UART                              | 1 Error Interru  | pt Enable bit      |                  |                  |                 |       |  |  |  |  |
|                 | 1 = Interrupt r                          | equest enable    | d                  |                  |                  |                 |       |  |  |  |  |
|                 | 0 = Interrupt r                          | request not ena  | abled              |                  |                  |                 |       |  |  |  |  |
| bit 0           | Unimplemen                               | ted: Read as '   | 0'                 |                  |                  |                 |       |  |  |  |  |

### REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

### REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

| r             |                  |                                            |                 |                  |                 |                 | ,     |
|---------------|------------------|--------------------------------------------|-----------------|------------------|-----------------|-----------------|-------|
| U-0           | R/W-1            | R/W-0                                      | R/W-0           | U-0              | R/W-1           | R/W-0           | R/W-0 |
| —             |                  | U1RXIP<2:0>                                |                 | —                |                 | SPI1IP<2:0>     |       |
| bit 15        |                  |                                            |                 |                  |                 |                 | bit 8 |
|               |                  |                                            |                 |                  |                 |                 |       |
| U-0           | R/W-1            | R/W-0                                      | R/W-0           | U-0              | R/W-1           | R/W-0           | R/W-0 |
|               |                  | SPI1EIP<2:0>                               |                 |                  |                 | T3IP<2:0>       |       |
| bit 7         |                  |                                            |                 |                  |                 |                 | bit 0 |
|               |                  |                                            |                 |                  |                 |                 |       |
| Legend:       |                  |                                            |                 |                  |                 |                 |       |
| R = Readable  | e bit            | W = Writable                               | bit             | U = Unimplei     | mented bit, rea | ad as '0'       |       |
| -n = Value at | POR              | '1' = Bit is set                           |                 | '0' = Bit is cle | eared           | x = Bit is unkn | iown  |
|               |                  |                                            |                 |                  |                 |                 | J     |
| bit 15        | Unimplem         | ented: Read as '                           | )'              |                  |                 |                 |       |
| bit 14-12     | U1RXIP<2         | :0>: UART1 Rece                            | iver Interrupt  | Priority bits    |                 |                 |       |
|               | 111 = Inter      | rrupt is priority 7 (I                     | niahest priori  | tv interrupt)    |                 |                 |       |
|               | •                | -FF2 (                                     | <b>J</b>        | - <b>J</b>       |                 |                 |       |
|               | •                |                                            |                 |                  |                 |                 |       |
|               | •<br>001 - Intor | rupt is priority 1                         |                 |                  |                 |                 |       |
|               | 001 = Inter      | rrupt is priority i                        | abled           |                  |                 |                 |       |
| bit 11        | Unimplem         | ented: Read as '                           | )'              |                  |                 |                 |       |
| bit 10-8      | SPI1IP<2:0       | 0>: SPI1 Event Int                         | errupt Priorit  | v bits           |                 |                 |       |
|               | 111 = Inter      | rrupt is priority 7 (I                     | niahest priori  | tv interrupt)    |                 |                 |       |
|               | •                |                                            |                 | ·) ······        |                 |                 |       |
|               | •                |                                            |                 |                  |                 |                 |       |
|               | •<br>001 - Intor | rupt is priority 1                         |                 |                  |                 |                 |       |
|               | 001 - Inter      | rrupt is priority i<br>rrupt source is dis | abled           |                  |                 |                 |       |
| bit 7         | Unimplem         | ented: Read as '                           | )'              |                  |                 |                 |       |
| bit 6-4       | SPI1EIP<2        | 2:0>: SPI1 Frror Ir                        | Iterrupt Priori | tv bits          |                 |                 |       |
|               | 111 = Inter      | rrupt is priority 7 (I                     | niahest priori  | ty interrupt)    |                 |                 |       |
|               | •                |                                            | <b>J</b>        | - <b>J</b>       |                 |                 |       |
|               | •                |                                            |                 |                  |                 |                 |       |
|               | •<br>001 - Intor | rupt is priority 1                         |                 |                  |                 |                 |       |
|               | 001 = Inter      | rrupt is priority i<br>rrupt source is dis | abled           |                  |                 |                 |       |
| bit 3         | Unimplem         | ented: Read as '                           | )'              |                  |                 |                 |       |
| bit 2-0       | T3IP<2:0>        | : Timer3 Interrupt                         | Priority bits   |                  |                 |                 |       |
| 5.12.0        | 111 = Inter      | rrupt is priority 7 (I                     | niahest priorit | tv interrupt)    |                 |                 |       |
|               | •                |                                            |                 | ·) ······        |                 |                 |       |
|               | •                |                                            |                 |                  |                 |                 |       |
|               | •                | ruptic priority 4                          |                 |                  |                 |                 |       |
|               | 001 = inter      | rrupt is priority 1                        | abled           |                  |                 |                 |       |
|               |                  |                                            |                 |                  |                 |                 |       |
|               |                  |                                            |                 |                  |                 |                 |       |

#### REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0                 | R/W-0 |  |
|-----------------|-------|------------------|-------|------------------|-----------------|-----------------------|-------|--|
|                 |       |                  | STA   | <15:8>           |                 |                       |       |  |
| bit 15          |       |                  |       |                  |                 |                       | bit 8 |  |
|                 |       |                  |       |                  |                 |                       |       |  |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0                 | R/W-0 |  |
|                 |       |                  | STA   | \<7:0>           |                 |                       |       |  |
| bit 7           |       |                  |       |                  |                 |                       | bit 0 |  |
|                 |       |                  |       |                  |                 |                       |       |  |
| Legend:         |       |                  |       |                  |                 |                       |       |  |
| R = Readable    | bit   | W = Writable I   | bit   | U = Unimpler     | mented bit, rea | ad as '0'             |       |  |
| -n = Value at P | OR    | '1' = Bit is set |       | '0' = Bit is cle | ared            | ed x = Bit is unknown |       |  |

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

#### REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

| R/W-0                                                                 | R/W-0 | R/W-0          | R/W-0 | R/W-0           | R/W-0           | R/W-0     | R/W-0 |
|-----------------------------------------------------------------------|-------|----------------|-------|-----------------|-----------------|-----------|-------|
|                                                                       |       |                | STE   | <15:8>          |                 |           |       |
| bit 15                                                                |       |                |       |                 |                 |           | bit 8 |
|                                                                       |       |                |       |                 |                 |           |       |
| R/W-0                                                                 | R/W-0 | R/W-0          | R/W-0 | R/W-0           | R/W-0           | R/W-0     | R/W-0 |
|                                                                       |       |                | STI   | 3<7:0>          |                 |           |       |
| bit 7                                                                 |       |                |       |                 |                 |           | bit 0 |
|                                                                       |       |                |       |                 |                 |           |       |
| Legend:                                                               |       |                |       |                 |                 |           |       |
| R = Readable                                                          | bit   | W = Writable b | it    | U = Unimpler    | mented bit, rea | ad as '0' |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un |       |                |       | x = Bit is unki | nown            |           |       |

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

## REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

| R/C-0           | R/C-0                                                           | R/C-0              | R/C-0           | R/C-0              | R/C-0            | R/C-0           | R/C-0  |  |  |  |  |
|-----------------|-----------------------------------------------------------------|--------------------|-----------------|--------------------|------------------|-----------------|--------|--|--|--|--|
| PWCOL7          | PWCOL6                                                          | PWCOL5             | PWCOL4          | PWCOL3             | PWCOL2           | PWCOL1          | PWCOL0 |  |  |  |  |
| bit 15          |                                                                 |                    |                 |                    |                  |                 | bit 8  |  |  |  |  |
|                 |                                                                 |                    |                 |                    |                  |                 |        |  |  |  |  |
| R/C-0           | R/C-0                                                           | R/C-0              | R/C-0           | R/C-0              | R/C-0            | R/C-0           | R/C-0  |  |  |  |  |
| XWCOL7          | XWCOL6                                                          | XWCOL5             | XWCOL4          | XWCOL3             | XWCOL2           | XWCOL1          | XWCOL0 |  |  |  |  |
| bit 7           |                                                                 |                    |                 |                    |                  |                 | bit 0  |  |  |  |  |
| Legend:         |                                                                 | C = Clear onl      | y bit           |                    |                  |                 |        |  |  |  |  |
| R = Readable    | bit                                                             | W = Writable       | bit             | U = Unimpler       | mented bit, read | d as '0'        |        |  |  |  |  |
| -n = Value at F | POR                                                             | '1' = Bit is set   |                 | '0' = Bit is cle   | ared             | x = Bit is unkr | nown   |  |  |  |  |
|                 |                                                                 |                    |                 |                    |                  |                 |        |  |  |  |  |
| bit 15          | PWCOL7: Ch                                                      | nannel 7 Periph    | neral Write Col | llision Flag bit   |                  |                 |        |  |  |  |  |
|                 | 1 = Write colli                                                 | ision detected     |                 |                    |                  |                 |        |  |  |  |  |
|                 | 0 = No write c                                                  |                    | ea              |                    |                  |                 |        |  |  |  |  |
| DIT 14          |                                                                 | iannel 6 Peripr    | ieral write Col | llision Flag bit   |                  |                 |        |  |  |  |  |
|                 | 1 = No write com                                                | collision detected | ed              |                    |                  |                 |        |  |  |  |  |
| bit 13          | PWCOL5: Ch                                                      | nannel 5 Periot    | eral Write Col  | llision Flag bit   |                  |                 |        |  |  |  |  |
|                 | 1 = Write colli                                                 | ision detected     |                 | lieieir i leig sit |                  |                 |        |  |  |  |  |
|                 | 0 = No write o                                                  | collision detect   | ed              |                    |                  |                 |        |  |  |  |  |
| bit 12          | PWCOL4: Ch                                                      | nannel 4 Periph    | neral Write Col | llision Flag bit   |                  |                 |        |  |  |  |  |
|                 | 1 = Write collision detected                                    |                    |                 |                    |                  |                 |        |  |  |  |  |
|                 | 0 = No write o                                                  | collision detect   | ed              |                    |                  |                 |        |  |  |  |  |
| bit 11          | PWCOL3: Ch                                                      | nannel 3 Periph    | neral Write Col | llision Flag bit   |                  |                 |        |  |  |  |  |
|                 | 1 = Write colli                                                 | ision detected     | 1               |                    |                  |                 |        |  |  |  |  |
|                 | 0 = No write c                                                  | collision detect   | ed              |                    |                  |                 |        |  |  |  |  |
| bit 10          | PWCOL2: Channel 2 Peripheral Write Collision Flag bit           |                    |                 |                    |                  |                 |        |  |  |  |  |
|                 | 1 = Write collision detected<br>0 = No write collision detected |                    |                 |                    |                  |                 |        |  |  |  |  |
| hit 9           |                                                                 | annel 1 Perint     | oeral Write Col | llision Elag bit   |                  |                 |        |  |  |  |  |
| bit 5           | 1 = Write colli                                                 | ision detected     |                 | insion riag bit    |                  |                 |        |  |  |  |  |
|                 | 0 = No write c                                                  | collision detect   | ed              |                    |                  |                 |        |  |  |  |  |
| bit 8           | PWCOL0: Ch                                                      | nannel 0 Periph    | neral Write Col | llision Flag bit   |                  |                 |        |  |  |  |  |
|                 | 1 = Write colli                                                 | ision detected     |                 | 0                  |                  |                 |        |  |  |  |  |
|                 | 0 = No write o                                                  | collision detect   | ed              |                    |                  |                 |        |  |  |  |  |
| bit 7           | XWCOL7: Ch                                                      | nannel 7 DMA       | RAM Write Co    | llision Flag bit   |                  |                 |        |  |  |  |  |
|                 | 1 = Write colli                                                 | ision detected     |                 |                    |                  |                 |        |  |  |  |  |
|                 | 0 = No write c                                                  | collision detect   | ed              |                    |                  |                 |        |  |  |  |  |
| bit 6           | XWCOL6: Ch                                                      | nannel 6 DMA       | RAM Write Co    | Illision Flag bit  |                  |                 |        |  |  |  |  |
|                 | $\perp$ = vvrite colli<br>0 = No write c                        | ision detected     | ₽d              |                    |                  |                 |        |  |  |  |  |
| hit 5           |                                                                 | annel 5 DMA        | RAM Write Co    | Illision Flag bit  |                  |                 |        |  |  |  |  |
| Sit U           | 1 = Write colli                                                 | ision detected     |                 | nision i lag bit   |                  |                 |        |  |  |  |  |
|                 | 0 = No write com                                                | collision detect   | ed              |                    |                  |                 |        |  |  |  |  |
| bit 4           | XWCOL4: Ch                                                      | nannel 4 DMA       | RAM Write Co    | llision Flag bit   |                  |                 |        |  |  |  |  |

1 = Write collision detected0 = No write collision detected

| U-0                               | U-0                | U-0              | U-0                       | U-0              | U-0              | U-0             | U-0   |
|-----------------------------------|--------------------|------------------|---------------------------|------------------|------------------|-----------------|-------|
|                                   |                    |                  | _                         |                  |                  |                 | _     |
| bit 15                            |                    |                  |                           |                  |                  |                 | bit 8 |
|                                   |                    |                  |                           |                  |                  |                 |       |
| U-0                               | U-0                | R/W-0            | R/W-0                     | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
| —                                 | _                  |                  |                           | TUN              | <5:0>(1)         |                 |       |
| bit 7                             | ·                  |                  |                           |                  |                  |                 | bit 0 |
|                                   |                    |                  |                           |                  |                  |                 |       |
| Legend:                           |                    |                  |                           |                  |                  |                 |       |
| R = Readable bit W = Writable bit |                    |                  |                           | U = Unimpler     | mented bit, read | 1 as '0'        |       |
| -n = Value at F                   | POR                | '1' = Bit is set |                           | '0' = Bit is cle | ared             | x = Bit is unkr | Iown  |
|                                   |                    |                  |                           |                  |                  |                 |       |
| bit 15-6                          | Unimplemen         | ted: Read as 'o  | )'                        |                  |                  |                 |       |
| bit 5-0                           | TUN<5:0>: FI       | RC Oscillator T  | uning bits <sup>(1)</sup> |                  |                  |                 |       |
|                                   | 111111 <b>= Ce</b> | nter frequency   | – 0.375% (7.3             | 345 MHz)         |                  |                 |       |
|                                   | •                  |                  |                           |                  |                  |                 |       |
|                                   | •                  |                  |                           |                  |                  |                 |       |
|                                   | 100001 <b>= Ce</b> | nter frequency   | – 11.625% (6              | 6.52 MHz)        |                  |                 |       |
|                                   | 100000 <b>= Ce</b> | nter frequency   | – 12% (6.49               | MHz)             |                  |                 |       |
|                                   | 011111 = Ce        | nter frequency   | + 11.625% (8              | 8.23 MHz)        |                  |                 |       |
|                                   | •                  | nter frequency   | + 11.25% (8.4             | 20 MHZ)          |                  |                 |       |
|                                   | •                  |                  |                           |                  |                  |                 |       |
|                                   | •                  |                  |                           |                  |                  |                 |       |
|                                   | 000001 = Ce        | nter frequency   | + 0.375% (7.4             | 40 MHz)          |                  |                 |       |
|                                   | 000000 = Ce        | nter frequency   | (1.31 WHZ NC              | ominal)          |                  |                 |       |
|                                   |                    |                  |                           |                  |                  |                 |       |

# REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER<sup>(2)</sup>

- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.
  - 2: This register is reset only on a Power-on Reset (POR).

NOTES:

### 15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user

TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

| Note: | See Section 13. "Output Compare"      |  |  |  |  |  |  |  |
|-------|---------------------------------------|--|--|--|--|--|--|--|
|       | (DS70209) in the "dsPIC33F/PIC24H     |  |  |  |  |  |  |  |
|       | Family Reference Manual" for OCxR and |  |  |  |  |  |  |  |
|       | OCxRS register restrictions.          |  |  |  |  |  |  |  |

| OCM<2:0> | Mode                         | OCx Pin Initial State                                                   | OCx Interrupt Generation         |
|----------|------------------------------|-------------------------------------------------------------------------|----------------------------------|
| 000      | Module Disabled              | Controlled by GPIO register                                             | —                                |
| 001      | Active-Low One-Shot          | 0                                                                       | OCx rising edge                  |
| 010      | Active-High One-Shot         | 1                                                                       | OCx falling edge                 |
| 011      | Toggle                       | Current output is maintained                                            | OCx rising and falling edge      |
| 100      | Delayed One-Shot             | 0                                                                       | OCx falling edge                 |
| 101      | Continuous Pulse             | 0                                                                       | OCx falling edge                 |
| 110      | PWM without Fault Protection | ʻ0', if OCxR is zero<br>ʻ1', if OCxR is non-zero                        | No interrupt                     |
| 111      | PWM with Fault Protection    | <ul><li>'0', if OCxR is zero</li><li>'1', if OCxR is non-zero</li></ul> | OCFA falling edge for OC1 to OC4 |

#### FIGURE 15-2: OUTPUT COMPARE OPERATION



FIGURE 17-1:  $I^2 C^{TM}$  BLOCK DIAGRAM (x = 1 OR 2)



# 19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*, Section 21. *"Enhanced Controller Area Network (ECAN™)"* (DS70185), which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

### 19.1 Overview

The Enhanced Controller Area Network (ECAN<sup>™</sup>) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJXXXGPX06A/X08A/X10A devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
  acceptance filters
- 3 full acceptance filter masks
- DeviceNet<sup>™</sup> addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation

- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

# 19.2 Frame Types

The CAN module transmits various types of frames which include data messages, remote transmission requests and as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID).

- Extended Data Frame: An extended data frame is similar to a standard data frame but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

| REGISTER <sup>2</sup>      | 19-16: CiRXF<br>(n = 0,                                                                                                                                | nSID: ECAN™<br>1,, 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MODULE                                              | ACCEPTANC         | E FILTER n S    | STANDARD ID     | ENTIFIER |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|-----------------|-----------------|----------|--|--|--|
| R/W-x                      | R/W-x                                                                                                                                                  | R/W-x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R/W-x                                               | R/W-x             | R/W-x           | R/W-x           | R/W-x    |  |  |  |
|                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SID                                                 | <10:3>            |                 |                 |          |  |  |  |
| bit 15                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                   |                 |                 | bit 8    |  |  |  |
| R/W-x                      | R/W-x                                                                                                                                                  | R/W-x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U-0                                                 | R/W-x             | U-0             | R/W-x           | R/W-x    |  |  |  |
|                            | SID<2:0>                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                   | EXIDE             | —               | EID<            | 17:16>   |  |  |  |
| bit 7                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                   |                 |                 | bit 0    |  |  |  |
| Legend:<br>R = Readabl     | e bit                                                                                                                                                  | W = Writable                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oit                                                 | U = Unimplei      | mented bit. rea | ud as '0'       |          |  |  |  |
| -n = Value at              | POR                                                                                                                                                    | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | '0' = Bit is cle  | eared           | x = Bit is unki | nown     |  |  |  |
| bit 15-5<br>bit 4<br>bit 3 | SID<10:0>: S<br>1 = Message<br>0 = Message<br>Unimplemen<br>EXIDE: Exte<br>If MIDE = 1:<br>1 = Match or<br>0 = Match or<br>If MIDE = 0:<br>Ignore EXID | DR    '1' = Bit is set    '0' = Bit is cleared    x = Bit is unknown      SID<10:0>: Standard Identifier bits    1    = Message address bit SIDx must be '1' to match filter      0 = Message address bit SIDx must be '0' to match filter    Unimplemented: Read as '0'      EXIDE: Extended Identifier Enable bit    If MIDE = 1:      1 = Match only messages with extended identifier addresses    0 = Match only messages with standard identifier addresses      If MIDE = 0:    1: |                                                     |                   |                 |                 |          |  |  |  |
| bit 2<br>bit 1-0           | Unimplemen<br>EID<17:16>:<br>1 = Message<br>0 = Message                                                                                                | nted: Read as '(<br>Extended Iden<br>address bit EIE<br>address bit EIE                                                                                                                                                                                                                                                                                                                                                                                                                   | )'<br>tifier bits<br>)x must be '1<br>)x must be '0 | ' to match filter |                 |                 |          |  |  |  |

# REGISTER 19-17: CiRXFnEID: ECAN<sup>TM</sup> MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

| R/W-x                                                                | R/W-x    | R/W-x            | R/W-x | R/W-x                                   | R/W-x | R/W-x | R/W-x |  |  |  |
|----------------------------------------------------------------------|----------|------------------|-------|-----------------------------------------|-------|-------|-------|--|--|--|
|                                                                      |          |                  | EID   | <15:8>                                  |       |       |       |  |  |  |
| bit 15                                                               |          |                  |       |                                         |       |       | bit 8 |  |  |  |
|                                                                      |          |                  |       |                                         |       |       |       |  |  |  |
| R/W-x                                                                | R/W-x    | R/W-x            | R/W-x | R/W-x                                   | R/W-x | R/W-x | R/W-x |  |  |  |
|                                                                      | EID<7:0> |                  |       |                                         |       |       |       |  |  |  |
| bit 7                                                                |          |                  |       |                                         |       |       | bit 0 |  |  |  |
|                                                                      |          |                  |       |                                         |       |       |       |  |  |  |
| Legend:                                                              |          |                  |       |                                         |       |       |       |  |  |  |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |          |                  |       | l as '0'                                |       |       |       |  |  |  |
| -n = Value at P                                                      | OR       | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |  |  |  |

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

#### REGISTER 19-24: CiRXOVF1: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 1

| R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0  | R/C-0  |
|---------|---------|---------|---------|---------|---------|--------|--------|
| RXOVF15 | RXOVF14 | RXOVF13 | RXOVF12 | RXOVF11 | RXOVF10 | RXOVF9 | RXOVF8 |
| bit 15  |         |         |         |         |         |        | bit 8  |

| R/C-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:                           | C = Clear only bit |                                    |                    |  |  |
|-----------------------------------|--------------------|------------------------------------|--------------------|--|--|
| R = Readable bit W = Writable bit |                    | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR                 | '1' = Bit is set   | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 15-0 **RXOVF15:RXOVF0:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

#### REGISTER 19-25: CIRXOVF2: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           | C = Clear only bit |                             |                    |
|-------------------|--------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit   | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set   | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 **RXOVF31:RXOVF16:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

### 20.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
  - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
  - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
  - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

### 20.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en546061              |

#### 20.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

# 21.4 Watchdog Timer (WDT)

For PIC24HJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TwDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.



### FIGURE 21-2: WDT BLOCK DIAGRAM

| Base<br>Instr<br># | Assembly<br>Mnemonic |             | Assembly Syntax | Description                              | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|-------------|-----------------|------------------------------------------|---------------|----------------|--------------------------|
| 1                  | ADD                  | ADD         | f               | f = f + WREG                             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD         | f,WREG          | WREG = f + WREG                          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD         | #lit10,Wn       | Wd = lit10 + Wd                          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD         | Wb,Ws,Wd        | Wd = Wb + Ws                             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD         | Wb,#lit5,Wd     | Wd = Wb + lit5                           | 1             | 1              | C,DC,N,OV,Z              |
| 2                  | ADDC                 | ADDC f      |                 | f = f + WREG + (C)                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC f,WREG |                 | WREG = f + WREG + (C)                    | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC        | #lit10,Wn       | Wd = Iit10 + Wd + (C)                    | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC        | Wb,Ws,Wd        | Wd = Wb + Ws + (C)                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC        | Wb,#lit5,Wd     | Wd = Wb + lit5 + (C)                     | 1             | 1              | C,DC,N,OV,Z              |
| 3                  | AND                  | AND         | f               | f = f .AND. WREG                         | 1             | 1              | N,Z                      |
|                    |                      | AND         | f,WREG          | WREG = f .AND. WREG                      | 1             | 1              | N,Z                      |
|                    |                      | AND         | #lit10,Wn       | Wd = lit10 .AND. Wd                      | 1             | 1              | N,Z                      |
|                    |                      | AND         | Wb,Ws,Wd        | Wd = Wb .AND. Ws                         | 1             | 1              | N,Z                      |
|                    |                      | AND         | Wb,#lit5,Wd     | Wd = Wb .AND. lit5                       | 1             | 1              | N,Z                      |
| 4                  | ASR                  | ASR         | f               | f = Arithmetic Right Shift f             | 1             | 1              | C,N,OV,Z                 |
|                    |                      | ASR         | f,WREG          | WREG = Arithmetic Right Shift f          | 1             | 1              | C,N,OV,Z                 |
|                    |                      | ASR         | Ws,Wd           | Wd = Arithmetic Right Shift Ws           | 1             | 1              | C,N,OV,Z                 |
|                    |                      | ASR         | Wb,Wns,Wnd      | Wnd = Arithmetic Right Shift Wb by Wns   | 1             | 1              | N,Z                      |
|                    |                      | ASR         | Wb,#lit5,Wnd    | Wnd = Arithmetic Right Shift Wb by lit5  | 1             | 1              | N,Z                      |
| 5                  | BCLR                 | BCLR        | f,#bit4         | Bit Clear f                              | 1             | 1              | None                     |
|                    |                      | BCLR        | Ws,#bit4        | Bit Clear Ws                             | 1             | 1              | None                     |
| 6                  | BRA                  | BRA         | C,Expr          | Branch if Carry                          | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | GE,Expr         | Branch if greater than or equal          | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | GEU,Expr        | Branch if unsigned greater than or equal | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | GT,Expr         | Branch if greater than                   | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | GTU,Expr        | Branch if unsigned greater than          | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | LE,Expr         | Branch if less than or equal             | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | LEU,Expr        | Branch if unsigned less than or equal    | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | LT,Expr         | Branch if less than                      | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | LTU, Expr       | Branch if unsigned less than             | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | N,Expr          | Branch if Negative                       | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | NC,Expr         | Branch if Not Carry                      | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | NN,Expr         | Branch if Not Negative                   | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | NZ,Expr         | Branch if Not Zero                       | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | Expr            | Branch Unconditionally                   | 1             | 2              | None                     |
|                    |                      | BRA         | Z,Expr          | Branch if Zero                           | 1             | 1 (2)          | None                     |
|                    |                      | BRA         | Wn              | Computed Branch                          | 1             | 2              | None                     |
| 7                  | BSET                 | BSET        | f,#bit4         | Bit Set f                                | 1             | 1              | None                     |
|                    |                      | BSET        | Ws,#bit4        | Bit Set Ws                               | 1             | 1              | None                     |
| 8                  | BSW                  | BSW.C       | Ws,Wb           | Write C bit to Ws <wb></wb>              | 1             | 1              | None                     |
|                    |                      | BSW.Z       | Ws,Wb           | Write Z bit to Ws <wb></wb>              | 1             | 1              | None                     |
| 9                  | BTG                  | BTG         | f,#bit4         | Bit Toggle f                             | 1             | 1              | None                     |
|                    |                      | BTG         | Ws,#bit4        | Bit Toggle Ws                            | 1             | 1              | None                     |
| 10                 | BTSC                 | BTSC        | f,#bit4         | Bit Test f, Skip if Clear                | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSC        | Ws,#bit4        | Bit Test Ws, Skip if Clear               | 1             | 1<br>(2 or 3)  | None                     |
| 11                 | BTSS                 | BTSS        | f,#bit4         | Bit Test f, Skip if Set                  | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSS        | Ws,#bit4        | Bit Test Ws, Skip if Set                 | 1             | 1<br>(2 or 3)  | None                     |

#### TABLE 22-2: INSTRUCTION SET OVERVIEW

© 2009-2012 Microchip Technology Inc.

#### TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

| AC CHARACTERISTICS |        |                                                                                    | Standard<br>Operating | <b>Operating</b><br>temperati | g Conditio<br>ure -40°<br>-40° | <b>C</b> ≤ TA ≤<br>C ≤ TA ≤<br>C ≤ TA ≤ · | <b>to 3.6V</b><br>+85°C f<br>+125°C f | (unless otherwise stated)<br>for Industrial<br>for Extended |
|--------------------|--------|------------------------------------------------------------------------------------|-----------------------|-------------------------------|--------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------------------|
| Param<br>No.       | Symbol | Characteristic                                                                     |                       | Min                           | Typ <sup>(1)</sup>             | Мах                                       | Units                                 | Conditions                                                  |
| OS50               | Fplli  | PLL Voltage Controlled<br>Oscillator (VCO) Input<br>Frequency Range <sup>(2)</sup> |                       | 0.8                           | _                              | 8                                         | MHz                                   | ECPLL, HSPLL, XTPLL<br>modes                                |
| OS51               | Fsys   | On-Chip VCO System<br>Frequency                                                    |                       | 100                           | —                              | 200                                       | MHz                                   | _                                                           |
| OS52               | TLOCK  | PLL Start-up Time (Lock Time)                                                      |                       | 0.9                           | 1.5                            | 3.1                                       | mS                                    | —                                                           |
| OS53               | DCLK   | CLKO Stability (Jitter)                                                            |                       | -3                            | 0.5                            | 3                                         | %                                     | Measured over 100 ms<br>period                              |

**Note 1:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base or communication clocks used by peripherals use the formula:

Peripheral Clock Jitter = DCLK /  $\sqrt{(Fosc/Peripheral bit rate clock)}$ 

Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz

SPI SCK Jitter = [ DCLK / \(\lambda(80 MHz/5 MHz))] = [3\(\lambda / 16] = [3\(\lambda / 4] = 0.75\)

#### TABLE 24-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY

| АС СНА                      | RACTERISTICS                                      | <b>Standar</b><br>Operatir | rd Operating temper | t <b>ing Con</b><br>rature | ditions: 3<br>-40°0<br>-40°0 | <b>3.0V to 3.6V (unless ot</b> $C \le TA \le +85^{\circ}C$ for Indu $C \le TA \le +125^{\circ}C$ for External for the external formula of the exte | <b>herwise stated)</b><br>Istrial<br>ended |  |  |  |
|-----------------------------|---------------------------------------------------|----------------------------|---------------------|----------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Param<br>No. Characteristic |                                                   | Min                        | Тур                 | Max                        | Units                        | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |  |  |  |
|                             | Internal FRC Accuracy @ 7.3728 MHz <sup>(1)</sup> |                            |                     |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |  |  |  |
| F20a                        | FRC                                               | -2                         |                     | +2                         | %                            | $-40^{\circ}C \le Ta \le +85^{\circ}C \qquad VDD = 3.0-3.6V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |  |  |  |
| F20b                        | FRC                                               | -5                         |                     | +5                         | %                            | $-40^{\circ}C \le TA \le +125^{\circ}C \qquad VDD = 3.0-3.6V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |  |  |  |

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

#### TABLE 24-19: INTERNAL LPRC ACCURACY

| AC CH        | ARACTERISTICS                                     | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |   |     |      |                                                |   |  |
|--------------|---------------------------------------------------|------------------------------------------------------|---|-----|------|------------------------------------------------|---|--|
| Param<br>No. | Param Characteristic Min Typ Max Units Conditions |                                                      |   |     | ions |                                                |   |  |
|              | LPRC @ 32.768 kHz <sup>(1)</sup>                  |                                                      |   |     |      |                                                |   |  |
| F21a         | LPRC                                              | -30                                                  | - | +30 | %    | $-40^\circ C \le T A \le +85^\circ C$          | — |  |
| F21b         | LPRC                                              | -35                                                  | — | +35 | %    | $-40^{\circ}C \le TA \le +125^{\circ}C \qquad$ |   |  |

**Note 1:** Change of LPRC frequency as VDD changes.

### FIGURE 24-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS



#### TABLE 24-25: INPUT CAPTURE TIMING REQUIREMENTS

| AC CHARACTERISTICS           |                           |                     | Standard Operati<br>(unless otherwise<br>Operating temperation | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |       |                                  |  |  |
|------------------------------|---------------------------|---------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------------------------|--|--|
| Param<br>No. Symbol Characte |                           |                     | ristic <sup>(1)</sup>                                          | Min                                                                                                                                                                                                                                                                                     | Мах | Units | Conditions                       |  |  |
| IC10                         | TccL                      | ICx Input Low Time  | No Prescaler                                                   | 0.5 Tcy + 20                                                                                                                                                                                                                                                                            |     | ns    | _                                |  |  |
|                              |                           |                     | With Prescaler                                                 | 10                                                                                                                                                                                                                                                                                      | —   | ns    |                                  |  |  |
| IC11                         | TccH                      | ICx Input High Time | No Prescaler                                                   | 0.5 Tcy + 20                                                                                                                                                                                                                                                                            | —   | ns    | —                                |  |  |
|                              |                           |                     | With Prescaler                                                 | 10                                                                                                                                                                                                                                                                                      | —   | ns    |                                  |  |  |
| IC15                         | C15 TccP ICx Input Period |                     |                                                                | (Tcy + 40)/N                                                                                                                                                                                                                                                                            |     | ns    | N = prescale<br>value (1, 4, 16) |  |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

### FIGURE 24-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS



### TABLE 24-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                               | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |     |       |                    |
|--------------------|--------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|--------------------|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup> | Min                                                                                                                                                                                                                                                                                     | Тур | Max | Units | Conditions         |
| OC10               | TccF   | OCx Output Fall Time          | —                                                                                                                                                                                                                                                                                       | _   |     | ns    | See parameter D032 |
| OC11               | TccR   | OCx Output Rise Time          | —                                                                                                                                                                                                                                                                                       | _   |     | ns    | See parameter D031 |

**Note 1:** These parameters are characterized but not tested in manufacturing.



# FIGURE 24-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

# APPENDIX B: REVISION HISTORY

# Revision A (April 2009)

This is the initial released version of the document.

### **Revision B (October 2009)**

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

### TABLE B-1:MAJOR SECTION UPDATES

| Section Name                                                         | Update Description                                                                                                                                          |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| "High-Performance, 16-bit<br>Microcontrollers"                       | Added information on high temperature operation (see " <b>Operating Range:</b> ").                                                                          |  |  |  |
| Section 10.0 "Power-Saving Features"                                 | Updated the last paragraph to clarify the number of cycles that occur prior to the start of instruction execution (see <b>Section 10.2.2 "Idle Mode"</b> ). |  |  |  |
| Section 11.0 "I/O Ports"                                             | Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of <b>Section 11.2</b> " <b>Open-Drain Configuration</b> ".          |  |  |  |
| Section 18.0 "Universal Asynchronous<br>Receiver Transmitter (UART)" | Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.                                                                                  |  |  |  |
| Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"       | Updated the ADCx block diagram (see Figure 20-1).                                                                                                           |  |  |  |
| Section 21.0 "Special Features"                                      | Updated the second paragraph and removed the fourth paragraph in <b>Section 21.1 "Configuration Bits"</b> .                                                 |  |  |  |
|                                                                      | Updated the Device Configuration Register Map (see Table 21-1).                                                                                             |  |  |  |
| Section 24.0 "Electrical Characteristics"                            | Updated the Absolute Maximum Ratings for high temperature and added Note 4.                                                                                 |  |  |  |
|                                                                      | Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 24-7).                                                                      |  |  |  |
|                                                                      | Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 24-36).                                                                     |  |  |  |
|                                                                      | Updated the SPIx Module Slave Mode (CKE = 1) Timing<br>Characteristics (see Figure 24-12).                                                                  |  |  |  |
|                                                                      | Updated the Internal LPRC Accuracy parameters (see Table 24-18 and Table 24-19).                                                                            |  |  |  |
|                                                                      | Updated the ADC Module Specifications (12-bit Mode) parameters AD23a and AD24a (see Table 24-40).                                                           |  |  |  |
|                                                                      | Updated the ADC Module Specifications (10-bit Mode) parameters AD23b and AD24b (see Table 24-41).                                                           |  |  |  |
| Section 25.0 "High Temperature Electrical Characteristics"           | Added new chapter with high temperature specifications.                                                                                                     |  |  |  |
| "Product Identification System"                                      | Added the "H" definition for high temperature.                                                                                                              |  |  |  |

NOTES: