

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp206a-h-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_	_	_				DC
bit 15	•		•				bit 8
R/W-0 ⁽¹⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С
bit 7							bit (
Legend:							
C = Clear only	y bit	R = Readabl	e bit	U = Unimplei	mented bit, read	l as '0'	
S = Set only b	bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15-9	Unimpleme	nted: Read as	ʻ0'				
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	•		low-order bit (for byte sized	data) or 8th low-	order bit (for wo	ord sized data
		sult occurred	14b law and an k	it (far buta aim	ad data) as Oth	law and an bit (for word since
		the result occu		Dit (for byte siz	ed data) or 8th	iow-order bit (for word sized
bit 7-5		PU Interrupt Pr		atus bits ⁽²⁾			
		nterrupt Priority			ots disabled		
	110 = CPU I	nterrupt Priority	/Level is 6 (14	+)			
		nterrupt Priority					
		nterrupt Priority					
		nterrupt Priority					
		nterrupt Priority					
		nterrupt Priority					
bit 4	RA: REPEAT	Loop Active bi	t				
		loop in progres					
bit 3		J Negative bit	-				
	1 = Result w	as negative					
1.11.0		as non-negativ		tive)			
bit 2		U Overflow bit					
		ed for signed ar ign bit to chang	· ·	omplement). It	indicates an ove	erflow of the ma	agnitude whici
		U U	·	ic (in this arith	metic operation)		
	0 = No overf		.g				
bit 1	Z: MCU ALU	I Zero bit					
	•				e time in the pa		oult)
bit 0		J Carry/Borrow		Jo line ∠ Dil Na	s cleared it (i.e.,	a 11011-2010 10	suit)
2.00				oit (MSb) of the	e result occurred	1	
		-out from the M				-	
					RCON<3>) to for		
	<pre>vei. The value i _<3> = 1.</pre>	in parentneses	indicates the I	rl rl<3> =	1. User interrup		

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 3.** "**Data Memory**" (DS70202) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The PIC24HJXXXGPX06A/X08A/X10A architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24HJXXXGPX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.4** "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24HJXXXGPX06A/X08A/ X10A family of devices are shown in Figure 4-1.

	PIC24HJ64XXXXXA	PIC24HJ128XXXXXA	PIC24HJ256XXXXXA	
▲	GOTO Instruction	 GOTO Instruction	 GOTO Instruction	0x000000 - 0x000002
	Reset Address	 Reset Address	 Reset Address	0x000004
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FE
	Reserved	 Reserved	 Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
User Memory Space	User Program Flash Memory (22K instructions)	 User Program Flash Memory	 User Program Flash Memory	0x000200
emory		(44K instructions)	(88K instructions)	0x0157FE
ser Mo			 	0x015800
Š	Unimplemented (Read '0's)	Unimplemented (Read '0's)		0x02ABFE 0x02AC00
			Unimplemented (Read '0's)	
				0x7FFFE 0x800000
ry Space	Reserved	Reserved	Reserved	0×F7FFE
IOU	Device Configuration Registers	 Device Configuration Registers	 Device Configuration Registers	0xF80000
Configuration Memory Space	Reserved	 Reserved	 Reserved	0xF80017 0xF80010
	DEVID (2)	 DEVID (2)	 DEVID (2)	0xFEFFFE 0xFF0000 0xFFFFFE

FIGURE 4-1: PROGRAM MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A FAMILY DEVICES

TABLE 4-24: PORTA REGISTER MAP⁽¹⁾

							-	-			-							
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	TRISA13	TRISA12	—	TRISA10	TRISA9	-	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	F6FF
PORTA	02C2	RA15	RA14	RA13	RA12	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	LATA13	LATA12	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	06C0	ODCA15	ODCA14	_	_		_	_	-			ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-25: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-26: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	—	_	_	_		TRISC4	TRISC3	TRISC2	TRISC1	—	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	—	_	_	_	_	—	RC4	RC3	RC2	RC1	—	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	-	LATC4	LATC3	LATC2	LATC1	—	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	_
POR (RCON<0>)	POR	_

TABLE 6-1:RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0** "Oscillator Configuration" for further details.

TABLE 6-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR]

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The system Reset signal is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable reset delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the reset signal is released.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF
bit 15		1					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15		RT2 Transmitte	•	g Status bit			
		request has oc request has no					
bit 14		RT2 Receiver li		Statue hit			
		request has oc					
		request has no					
bit 13	INT2IF: Exter	nal Interrupt 2	Flag Status b	it			
		request has oc request has no					
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
		request has oc request has no					
bit 11	T4IF: Timer4	Interrupt Flag	Status bit				
		request has oc request has no					
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
		request has oc request has no					
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	s bit		
		request has oc request has no					
bit 8	•	•		Complete Inte	rrupt Flag Statu	ıs bit	
	1 = Interrupt r	request has oc	curred	·			
bit 7	•	request has no Capture Chann		Flag Status hit			
		request has oc	-	nag otatus bit			
		equest has no					
bit 6		Capture Chann		Flag Status bit			
		request has oc request has no					
bit 5	•	•		rupt Flag Statu	s bit		
		request has oc	-	apt i lag oldtu			
		request has no					
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status b	it			
		equest has oc					
	0 = Interrupt r	request has no	toccurred				

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T8IP<2:0>		_		MI2C2IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	10,00-1	SI2C2IP<2:0>	10,00-0			T7IP<2:0>	1000-0
bit 7		0120211 12:04				1111 -2.0-	bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	Timer8 Interrupt					
		rupt is priority 7 (-	y interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8		:0>: I2C2 Master		•	6		
	111 = Interi	rupt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 7		ented: Read as '					
bit 6-4	-	:0>: I2C2 Slave E		pt Priority bits			
		rupt is priority 7 (I		• •			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Inter i	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0		Timer7 Interrupt	-				
	111 = Interi	rupt is priority 7 (I	highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1	a la la al				
	000 = Interi	rupt source is dis	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C2RXIP<2:0>		_		INT4IP<2:0>	
bit 15	•				•		bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		INT3IP<2:0>		—		T9IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	-	ented: Read as 'o					
bit 14-12		:0>: ECAN2 Rece			iority bits		
	111 = Inter	rupt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
		rupt source is dis					
bit 11	Unimpleme	ented: Read as '	כ'				
bit 10-8	INT4IP<2:0	>: External Interr	upt 4 Priority	bits			
	111 = Inter	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as 'o	o'				
bit 6-4	INT3IP<2:0	>: External Interr	upt 3 Priority	bits			
	111 = Inter	rupt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
		rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	o'				
bit 2-0	-	Timer9 Interrupt					
		rupt is priority 7 (I	-	ty interrupt)			
	•		5				
	•						
	• 001 - Inter	rupt is priority 1					

REGISTER 7-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

NOTES:

11.6 I/O Helpful Tips

- 1. In some cases, certain pins as defined in TABLE 24-9: "DC Characteristics: I/O Pin Input Specifications" under "Injection Current", have internal protection diodes to VDD and Vss. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2. (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 24.0 "Electrical Characteristics" for additional information.

11.7 I/O Resources

Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546061

11.7.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL		—	_	—	
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
0-0	TGATE	1	S<1:0>	T32	0-0	TCS ⁽¹⁾	0-0
 bit 7	IGAIE	TCKP	5<1.0>	132	_	1030	bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timerx	On bit					
	When T32 = 1	L:					
	1 = Starts 32- 0 = Stops 32-						
	<u>When T32 = 0</u>						
	1 = Starts 16- 0 = Stops 16-						
bit 14	Unimplemen		٠́ ()'				
bit 13	TSIDL: Stop i						
	•	ue module ope	eration when d	evice enters Idl de	e mode		
bit 12-7	Unimplemen	-					
bit 6	TGATE: Time	rx Gated Time	e Accumulatior	n Enable bit			
	When TCS =						
	This bit is igno						
	When TCS = 1 = Gated tim		n enabled				
	0 = Gated tim						
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	le Select bits			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3	T32: 32-bit Ti	mer Mode Sel	ect bit				
	1 = Timerx an 0 = Timerx an						
bit 2	Unimplemen	-					
bit 1	TCS: Timerx						
	1 = External c 0 = Internal cl	clock from pin		rising edge)			
		· · /					

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 19-8: CIEC: ECAN™ MODULE TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERR	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERR	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	bit	U = Unimplen	nented bit, re	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 RERRCNT<7:0>: Receive Error Count bits

REGISTER 19-31: CITRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS

	(n = 0,	1,, 31)						
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—	FILHIT<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
			_	—	—	—		
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable bit U = Unimplemented bit, read as '0'						

bit 15-13 **Unimplemented:** Read as '0'

-n = Value at POR

'1' = Bit is set

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

'0' = Bit is cleared

bit 7-0 Unimplemented: Read as '0'

x = Bit is unknown

REGISTER	20-5. ADXC	13123: ADC)		ANNEL $I, Z,$	SELECT RE	GIGIER	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	_	_	—	CH123N	NB<1:0>	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_			_		CH123N	VA<1:0>	CH123SA
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 15-11	-	ted: Read as '					
bit 10-9			•	•	or Sample B bit	S	
		B = 1, CHxNB i				1	N144
		, ,	· U		N10, CH3 nega N7, CH3 negati		
	-	I2, CH3 negati	-		intr, en le negati		
bit 8		nannel 1, 2, 3 F	•		ple B bit		
	When AD12E	s = 1, CHxSB i	s: U-0, Unim	plemented, Re	ad as '0'		
			· ·		, CH3 positive i		
	•	•	•	e input is AN1	, CH3 positive i	nput is AN2	
bit 7-3	•	ted: Read as '					
bit 2-1			•	•	or Sample A bit	S	
		B = 1, CHxNA i					
		, ,	· U		N10, CH3 nega N7, CH3 negati		
		I2, CH3 negati			in, cho negati		10
bit 0		nannel 1, 2, 3 F	•		ple A bit		
-		B = 1, CHxSA i	•		•		
	1 = CH1 posit	ive input is AN	3, CH2 positiv	e input is AN4	, CH3 positive i		
	0 = CH1 posit	ive input is AN	0, CH2 positiv	e input is AN1	, CH3 positive i	nput is AN2	

REGISTER 20-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

REGISTER 20-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3,4)

PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 bit 15 bit 8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15 bit 8	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
	bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PCFG<15:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: On devices with 2 analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
 - **3:** PCFGx = ANx, where x = 0 through 15.
 - 4: PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteris	Characteristic			Max	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range ⁽²⁾		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	_	
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	—	
OS53	DCLK	CLKO Stability (Jitter	.)	-3	0.5	3	%	Measured over 100 ms period	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base or communication clocks used by peripherals use the formula:

Peripheral Clock Jitter = DCLK / $\sqrt{(Fosc/Peripheral bit rate clock)}$

Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz

SPI SCK Jitter = [DCLK / \(\lambda(80 MHz/5 MHz))] = [3\(\lambda / 16] = [3\(\lambda / 4] = 0.75\)

TABLE 24-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	Internal FRC Accuracy @ 7.3728 MHz ⁽¹⁾								
F20a	FRC	-2	_	+2	%	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V		
F20b	FRC	-5	_	+5	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 24-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	_	+30	%	$-40^\circ C \le T A \le +85^\circ C$	—	
F21b	LPRC	-35	—	+35	%	$-40^\circ C \le T A \le +125^\circ C$	_	

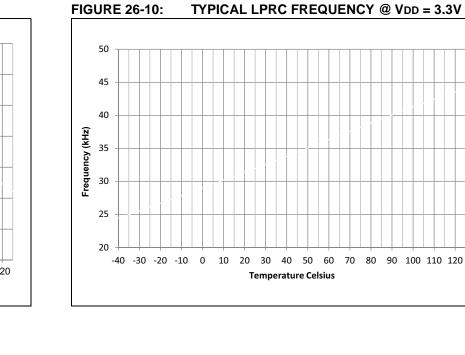

Note 1: Change of LPRC frequency as VDD changes.


TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SY10	ТмсL	MCLR Pulse Width (low)	2	_		μS	-40°C to +85°C		
SY11	Tpwrt	Power-up Timer Period	_	2 4 8 16 32 64 128	_	ms	-40°C to +85°C User programmable		
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	_		
SY20	Twdt1	Watchdog Timer Time-out Period	—	_	—	—	See Section 21.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 24-19)		
SY30	Тоѕт	Oscillator Start-up Timer Period	—	1024 Tosc		—	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μS	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

Section Name Update Description Section 24.0 "Electrical Characteristics" Removed Note 4 from the DC Temperature and Voltage	TABLE B-2: MAJOR SECTION UPDATES (CONTINUED)						
	Section Name	Update Description					
Specifications (see Table 24-9).		Specifications (see Table 24-4). Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Inpu Specifications (see Table 24-9). Removed Note 2 from the AC Characteristics: Internal RC Accuracy					

TABLE B-2: MAJOR SECTION UPDATES (CONTINUED)

	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 24-18).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 24-20).
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 24-39).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 24-40).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 24-41).
	Added DMA Read/Write Timing Requirements (see Table 24-44).
Section 25.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 25-2).
	Added Note 3 and updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 25-15).
	Added Note 3 and updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 25-16).

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Revision Level Tape and Reel FI Temperature Rar	amily – y Size (ag (if a nge	b) PIC24HJ64GP506AI/PT-ES: General-purpose PIC24H, 64 KB program memory, 64-pin, Industrial temp.,	
Architecture:	24	16-bit Microcontroller	
Flash Memory Family:	HJ	Flash program memory, 3.3V, High-speed	
Product Group:	GP2 GP3 GP5 GP6	General purpose family General purpose family General purpose family General purpose family	
Pin Count:	06 10	64-pin 100-pin	
Temperature Range:	I E H	-40°C to+85°C(Industrial) -40°C to+125°C(Extended) -40°C to+150°C(High)	
Package:	PT PF MR	10x10 or 12x12 mm TQFP (Thin Quad Flatpack) 14x14 mm TQFP (Thin Quad Flatpack) 9x9x0.9 mm QFN (Thin Quad Flatpack)	
Pattern:	Three-c (blank c ES	QTP, SQTP, Code or Special Requirements wise) Engineering Sample	