

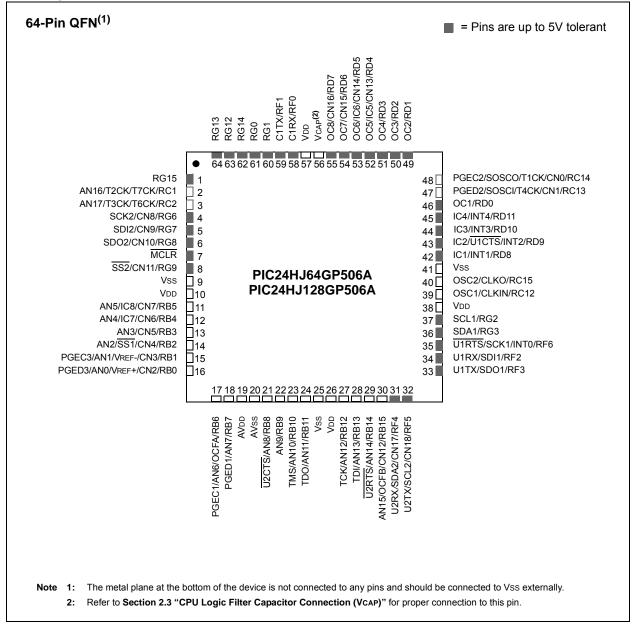
Welcome to E-XFL.COM

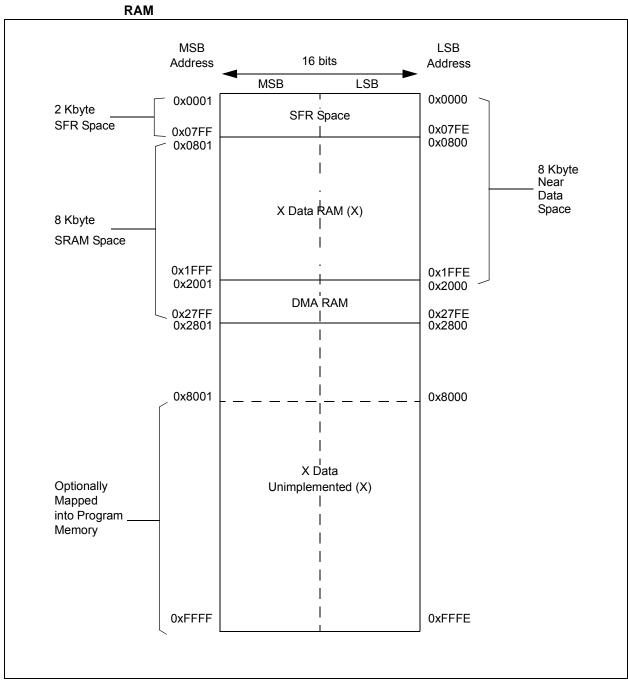
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp206at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A DEVICES WITH 8 KB

TABLE 4-17: DMA REGISTER MAP

File Name	-17: Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
																		Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	_				_	AMOD		—	—	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	—	—		—	—			—				RQSEL<6:0	>			0000
DMA0STA	0384									TA<15:0>								0000
DMA0STB	0386									TB<15:0>								0000
DMA0PAD	0388							r	P	AD<15:0>								0000
DMA0CNT	038A	_		—	—	—	—						<9:0>	-		r		0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_			_		AMOD		_	—	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	—	—		—	—			—			I	RQSEL<6:0	>			0000
DMA1STA	0390								S	TA<15:0>								0000
DMA1STB	0392								S	TB<15:0>								0000
DMA1PAD	0394							1	P	AD<15:0>								0000
DMA1CNT	0396	—	—	—	—	—	—					CNT	<9:0>	T				0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	_			_	_	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	—	—		—	—			—				RQSEL<6:0	>			0000
DMA2STA	039C								S	TA<15:0>								0000
DMA2STB	039E								S	TB<15:0>								0000
DMA2PAD	03A0								Р	AD<15:0>								0000
DMA2CNT	03A2	—	—	—	—	—	—					CNT	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	—	—	—	—	—	—	—	—			I	RQSEL<6:0	>			0000
DMA3STA	03A8								S	TA<15:0>								0000
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC								Р	AD<15:0>								0000
DMA3CNT	03AE	-	-	_	_	_	_					CNT	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA4STA	03B4								S	TA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								Р	AD<15:0>								0000
DMA4CNT	03BA	_	_	_	—	_	_					CNT	<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	_	_	—	_	_	_	_	_		•	I	RQSEL<6:0	>			0000
DMA5STA	03C0								S	TA<15:0>								0000
DMA5STB	03C2								S	TB<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

7.0 INTERRUPT CONTROLLER

- **Note 1:** This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70184) of the "dsPIC33F/PIC24H Familv Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24HJXXXGPX06A/X08A/X10A CPU. It has the following features:

- · Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of 8 nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24HJXXXGPX06A/X08A/X10A devices implement up to 61 unique interrupts and 5 nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24HJXXXGPX06A/X08A/X10A device clears its registers in response to a Reset which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IE	DMA4IE	—	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE
bit 7				0			bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	T6IE: Timer6	Interrupt Enabl	e bit				
		request enable					
	0 = Interrupt r	equest not ena	bled				
bit 14		A Channel 4 D		Complete Interi	rupt Enable bit		
		equest enable equest not ena					
bit 13	•	ted: Read as '					
bit 12	•	ut Compare Ch		unt Enable bit			
511 12	•	request enable					
		equest not ena					
bit 11	OC7IE: Outpu	ut Compare Ch	annel 7 Interr	upt Enable bit			
		equest enable equest not ena					
bit 10	OC6IE: Outpu	ut Compare Ch	annel 6 Interr	upt Enable bit			
		equest enable equest not ena					
bit 9	OC5IE: Outpu	ut Compare Ch	annel 5 Interr	upt Enable bit			
		equest enable equest not ena					
bit 8		Capture Channe		Enable bit			
		equest enable equest not ena					
bit 7		Capture Channe		Enable bit			
	-	equest enable					
	•	request not ena					
bit 6	-	Capture Channe		Enable bit			
		equest enable equest not ena					
bit 5	•	Capture Channe		-nable bit			
	-	equest enable	-				
	0 = Interrupt r	equest not ena	bled				
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Interi	rupt Enable bit		
		equest enable equest not ena					
bit 3	-	Event Interrup					
bit J		equest enable					
		equest not ena					

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	—	_	_	_	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
_	TGATE	TCKP	S<1:0>	—	TSYNC	TCS	—				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	TON: Timer1	On bit									
	1 = Starts 16	-bit Timer1									
	0 = Stops 16	-bit Timer1									
bit 14	Unimplemer	nted: Read as '	0'								
bit 13	TSIDL: Stop	in Idle Mode bi	t								
		nue module ope e module operat			dle mode						
bit 12-7	Unimplemer	nted: Read as '	0'								
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	When TCS = This bit is igr										
		<u>: 0:</u> ne accumulatio ne accumulatio									
bit 5-4	TCKPS<1:0	>: Timer1 Input	Clock Presca	ale Select bits							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8 00 = 1:1										
L:1 0		stad. Daad as '	0'								
bit 3	-	nted: Read as '		a hranization C	alaat hit						
bit 2	When TCS =	er1 External Cl	ock input Syr	ichronization 5	elect bit						
	1 = Synchror	<u>· ⊥.</u> nize external clo ynchronize exte		out							
	When TCS = This bit is igr	<u>= 0:</u>									
bit 1	TCS: Timer1	Clock Source	Select bit								
	1 = External	clock from pin	T1CK (on the	risina edae)							
	0 = Internal o		- (3 - 3 - 9							

NOTES:

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL		—	—	—	—
bit 15			•				bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7			•				bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in hardware only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Compare x
	0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	
pit 15							bit	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
—	—	_	—	—	—	FRMDLY	—	
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'		
-n = Value at	POR	-n = Value at POR '1' = Bit is set				x = Bit is unknown		
bit 15	1 = Framed S		abled (SSx p	oin used as fram	ared e sync pulse	input/output)		
bit 15	1 = Framed S	SPIx support en	abled (SSx p	oin used as fram		input/output)		
bit 15 bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran	SPIx support en SPIx support dis me Sync Pulse	abled (<mark>SSx</mark> p abled Direction Co			input/output)		
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output	abled (SSx p sabled Direction Co (slave) t (master)	ntrol bit		input/output)		
	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran	SPIx support en SPIx support dis me Sync Pulse nc pulse input (abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit	ntrol bit		input/output)		
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran 1 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high	ntrol bit		input/output)		
bit 14	1 = Framed S 0 = Framed S SPIFSD: France 1 = Frame sy 0 = Frame sy FRMPOL: France sy 0 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is activ	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low	ntrol bit		input/output)		
bit 14 bit 13	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran 1 = Frame sy 0 = Frame sy Unimplemen	Plx support en Plx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is acti nc pulse is acti	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low o'	ntrol bit		input/output)		
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: France 1 = Frame sy 0 = Frame sy 0 = Frame sy 0 = Frame sy Unimplement FRMDLY: France 1 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is actir nc pulse is actir ated: Read as '(ame Sync Pulse nc pulse coincir	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low o' e Edge Selec des with first	ntrol bit t bit bit clock		input/output)		
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: France 1 = Frame sy 0 = Frame sy 0 = Frame sy 0 = Frame sy Unimplement FRMDLY: France 1 = Frame sy 0 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is actir nc pulse is actir ted: Read as '(ame Sync Pulse	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low p' e Edge Selec des with first des first bit c	ntrol bit t bit bit clock		input/output)		

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C Port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please refer to the *"dsPIC33F/PIC24H Family Reference Manual"*.

REGISTER 19-2: CiCTRL2: ECAN™ MODULE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_		_	—		—	
bit 15					•		bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
_	—	_			DNCNT<4:0>			
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits				
	10010-1111	1 = Invalid sel	ection					
	10001 = Con	npare up to dat	a byte 3, bit 6	with EID<17>				
	•							
	•							
	•							
		npare up to dat not compare da		with EID<0>				

REGISTER 19-15: CIBUFPNT4: ECAN™ MODULE FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15BF	o<3:0>			F14B	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F13BF	P<3:0>			F12B	P<3:0>	
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at	n = Value at POR '1' = Bit is set				ed	x = Bit is unkr	nown
bit 15-12	1111 = Filter	: RX Buffer Wri hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
	•						
	•						
		hits received ir hits received ir					
bit 11-8	1111 = Filter	: RX Buffer Wri hits received ir hits received ir	ו RX FIFO bu	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 7-4	1111 = Filter	: RX Buffer Wri hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 3-0		: RX Buffer Wri					
	1111 = Filter	hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
	•						
	0001 = Filter	hits received in	n RX Buffer 1				

REGISTER 19-22: CIRXFUL1: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | • | | | • | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL15:RXFUL0:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CiRXFUL2: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL31:RXFUL16:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-24: CiRXOVF1: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF15:RXOVF0:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-25: CIRXOVF2: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | • | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF31:RXOVF16:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

Base Assembly # of # of Status Flags Instr Assembly Syntax Description Mnemonic Words Cycles Affected # 47 Relative Call RCALL RCALL 1 2 None Expr RCALL Computed Call 1 2 None Wn 48 REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None REPEAT Repeat Next Instruction (Wn) + 1 times 1 1 None Wn 1 1 49 RESET RESET Software device Reset None 50 RETFIE RETFIE Return from interrupt 1 3 (2) None 51 RETLW #lit10,Wn Return with literal in Wn 1 3 (2) None RETLW 52 1 RETURN RETURN Return from Subroutine 3 (2) None 53 RLC RLC f = Rotate Left through Carry f 1 1 C,N,Z f RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z 54 f = Rotate Left (No Carry) f 1 1 N,Z RLNC RUNC f 1 RLNC f,WREG WREG = Rotate Left (No Carry) f 1 N,Z RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z 55 RRC RRC f = Rotate Right through Carry f 1 1 C,N,Z f WREG = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG RRC Wd = Rotate Right through Carry Ws 1 1 C,N,Z Ws,Wd 56 RRNC RRNC f = Rotate Right (No Carry) f 1 1 N,Z f WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG Wd = Rotate Right (No Carry) Ws 1 1 N,Z RRNC Ws,Wd 1 C,N,Z 57 SE SE Ws,Wnd Wnd = sign-extended Ws 1 58 SETM SETM f f = 0xFFFF1 1 None WREG = 0xFFFF 1 1 SETM WREG None Ws = 0xFFFF 1 SETM Ws 1 None 59 SL SL f f = Left Shift f 1 1 C,N,OV,Z SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z Wd = Left Shift Ws 1 1 C,N,OV,Z SL Ws,Wd Wnd = Left Shift Wb by Wns 1 1 SL N.Z Wb, Wns, Wnd SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z 60 SUB SUB f = f – WREG 1 1 C,DC,N,OV,Z f WREG = f - WREG 1 1 C,DC,N,OV,Z SUB f,WREG Wn = Wn - lit10SUB #lit10,Wn 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb - Ws1 1 C,DC,N,OV,Z Wd = Wb - lit5 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd 61 SUBB $f = f - WREG - (\overline{C})$ C,DC,N,OV,Z 1 1 SUBB f WREG = $f - WREG - (\overline{C})$ 1 SUBB f,WREG 1 C,DC,N,OV,Z $Wn = Wn - lit10 - (\overline{C})$ 1 C,DC,N,OV,Z 1 SUBB #lit10,Wn SUBB $Wd = Wb - Ws - (\overline{C})$ 1 1 C,DC,N,OV,Z Wb,Ws,Wd SUBB Wb,#lit5,Wd $Wd = Wb - lit5 - (\overline{C})$ 1 1 C,DC,N,OV,Z 62 SUBR f = WREG - f 1 1 C,DC,N,OV,Z SUBR f WREG = WREG - f 1 1 C,DC,N,OV,Z SUBR f,WREG SUBR Wb,Ws,Wd Wd = Ws - Wb 1 1 C,DC,N,OV,Z Wd = lit5 - Wb1 1 C,DC,N,OV,Z SUBR Wb, #lit5, Wd 63 SUBBR $f = WREG - f - (\overline{C})$ 1 1 C,DC,N,OV,Z SUBBR f WREG = WREG - f - (\overline{C}) 1 SUBBR f,WREG 1 C,DC,N,OV,Z $Wd = Ws - Wb - (\overline{C})$ 1 1 C,DC,N,OV,Z SUBBR Wb.Ws.Wd $Wd = lit5 - Wb - (\overline{C})$ 1 C,DC,N,OV,Z SUBBR Wb,#lit5,Wd 1 64 1 SWAP SWAP.b Wn Wn = nibble swap Wn 1 None SWAP Wn = byte swap Wn 1 1 None Wn 1 2 65 Read Prog<23:16> to Wd<7:0> TBLRDH TBLRDH Ws,Wd None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	15 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - **2:** Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
 - Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

25.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 24.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 24.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias ⁽⁴⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(5)}$	
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(5)}$	0.3V to 5.6V
Voltage on VCAP with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽²⁾	60 mA
Maximum junction temperature	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	2 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	4 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	8 mA
Maximum current sunk by all ports combined	10 mA
Maximum current sourced by all ports combined ⁽²⁾	10 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.

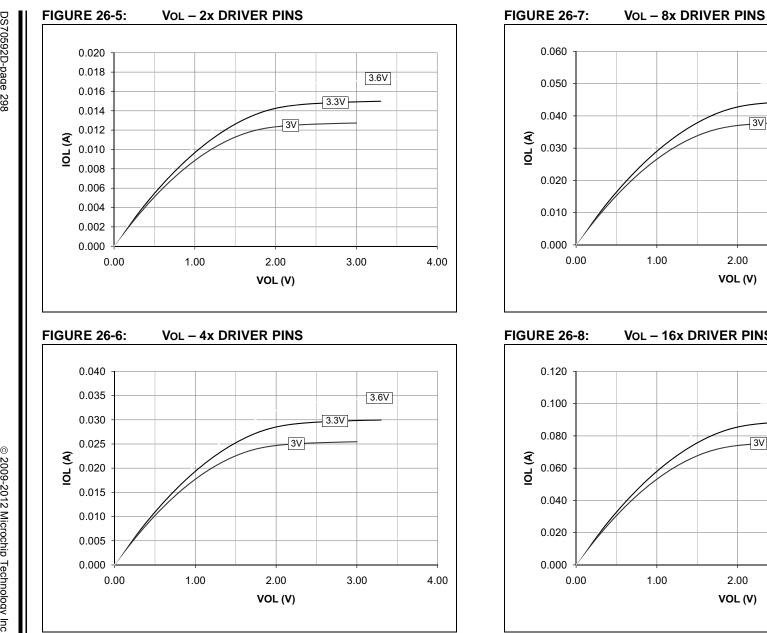
- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
- **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins.
- 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
- 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

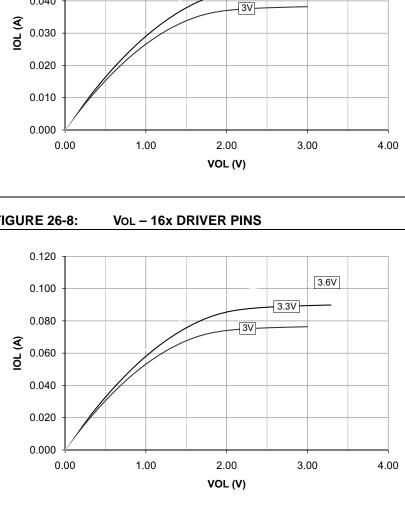
DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Parameter No.	Typical	Max	Units	Conditions				
Power-Down Current (IPD)								
HDC61c	3	5	μA	+150°C	3.3V	Watchdog Timer Current: ΔIWDT ^(2,4)		

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

- 2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 3: These currents are measured on the device containing the most memory in this family.
- 4: These parameters are characterized, but are not tested in manufacturing.

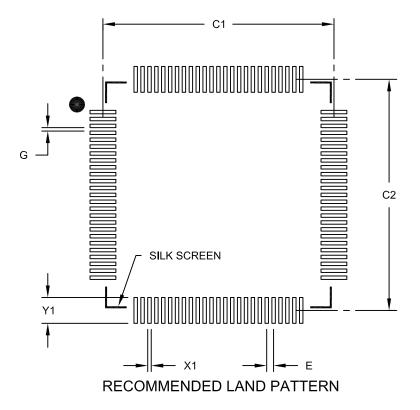
TABLE 25-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)


DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Max	Doze Ratio	Units	Conditions			
HDC72a	39	45	1:2	mA				
HDC72f	18	25	1:64	mA	+150°C	3.3V	20 MIPS	
HDC72g	18	25	1:128	mA				


Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

3.6V

3.3V



DS70592D-page 298

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensior	MIN	NOM	MAX				
Contact Pitch	E	0.40 BSC					
Contact Pad Spacing	C1		13.40				
Contact Pad Spacing	C2		13.40				
Contact Pad Width (X100)	X1			0.20			
Contact Pad Length (X100)	Y1			1.50			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B