

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

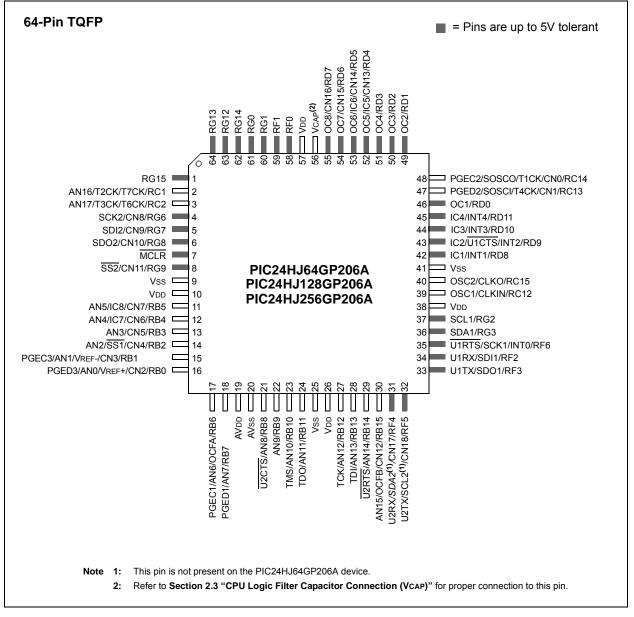
Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp210a-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24H PRODUCT FAMILIES

The PIC24H Family of devices is ideal for a wide variety of 16-bit MCU embedded applications. The device names, pin counts, memory sizes and peripheral availability of each device are listed below, followed by their pinout diagrams.


PIC24H Family Controllers

Device	Pins	Program Flash Memory (KB)	RAM ⁽¹⁾ (KB)	DMA Channels	Timer 16-bit	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	SPI	I ² C TM	CAN	I/O Pins (Max) ⁽²⁾	Packages
PIC24HJ64GP206A	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	1	0	53	PT, MR
PIC24HJ64GP210A	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ64GP506A	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT, MR
PIC24HJ64GP510A	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP206A	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ128GP210A	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ128GP506A	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT, MR
PIC24HJ128GP510A	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP306A	64	128	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ128GP310A	100	128	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP206A	64	256	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ256GP210A	100	256	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP610A	100	256	16	8	9	8	8	0	2 ADC, 32 ch	2	2	2	2	85	PF, PT

Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.

2: Maximum I/O pin count includes pins shared by the peripheral functions.

Pin Diagrams (Continued)

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the PIC24HJ256GP610A product page on the Microchip web site (www.microchip.com) or by selecting a family reference manual section from the following list.

In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit[™] (I2C[™])" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

This document contains device specific information for the following devices:

- PIC24HJ64GP206A
- PIC24HJ64GP210A
- PIC24HJ64GP506A
- PIC24HJ64GP510A
- PIC24HJ128GP206A
- PIC24HJ128GP210A
- PIC24HJ128GP506A
- PIC24HJ128GP510A
- PIC24HJ128GP306A
- PIC24HJ128GP310A
- PIC24HJ256GP206A
- PIC24HJ256GP210A
- PIC24HJ256GP610A

The PIC24HJXXXGPX06A/X08A/X10A device family includes devices with different pin counts (64 and 100 pins), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes and 16 Kbytes).

This makes these families suitable for a wide variety of high-performance digital signal control applications. The devices are pin compatible with the dsPIC33F family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.

The PIC24HJXXXGPX06A/X08A/X10A device family employs a powerful 16-bit architecture, ideal for applications that rely on high-speed, repetitive computations, as well as control.

The 17 x 17 multiplier, hardware support for division operations, multi-bit data shifter, a large array of 16-bit working registers and a wide variety of data addressing modes. together provide the PIC24HJXXXGPX06A/X08A/X10A Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the PIC24HJXXXGPX06A/X08A/X10A devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use PIC24HJXXXGPX06A/X08A/X10A devices.

Figure 1-1 shows a general block diagram of the various core and peripheral modules in the PIC24HJXXXGPX06A/X08A/X10A family of devices, while Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Out	tput Compar	e 1 Seconda	ary Register							xxxx
OC1R	0182								Output Co	ompare 1 Re	egister							xxxx
OC1CON	0184	—	_	OCSIDL	—	_	—	—	_	—	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Out	tput Compar	e 2 Seconda	ary Register							xxxx
OC2R	0188								Output Co	ompare 2 Re	egister							xxxx
OC2CON	018A	_		OCSIDL			_						OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Out	tput Compar	e 3 Seconda	ary Register							xxxx
OC3R	018E		Output Compare 3 Register										xxxx					
OC3CON	0190	_		OCSIDL			_						OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192		Output Compare 4 Secondary Register										xxxx					
OC4R	0194		Output Compare 4 Register										xxxx					
OC4CON	0196	—	-	OCSIDL	—	_	—	-	—	—	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC5RS	0198							Out	tput Compar	e 5 Seconda	ary Register							xxxx
OC5R	019A								Output Co	ompare 5 Re	egister							xxxx
OC5CON	019C	—	-	OCSIDL	—	_	—	-	—	—	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC6RS	019E							Out	tput Compar	e 6 Seconda	ary Register							xxxx
OC6R	01A0			_					Output Co	ompare 6 Re	egister			_				xxxx
OC6CON	01A2	—	_	OCSIDL	—	—	_	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000
OC7RS	01A4							Out	tput Compar	e 7 Seconda	ary Register							xxxx
OC7R	01A6								Output Co	ompare 7 Re	egister							xxxx
OC7CON	01A8	_		OCSIDL	—	_	_	_	—	—	—	-	OCFLT	OCTSEL		OCM<2:0>		0000
OC8RS	01AA							Out	tput Compar	e 8 Seconda	ary Register							xxxx
OC8R	01AC								Output Co	ompare 8 Re	egister							xxxx
OC8CON	01AE	_		OCSIDL	_	_	—	_	_	_	_		OCFLT	OCTSEL		OCM<2:0>		0000

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

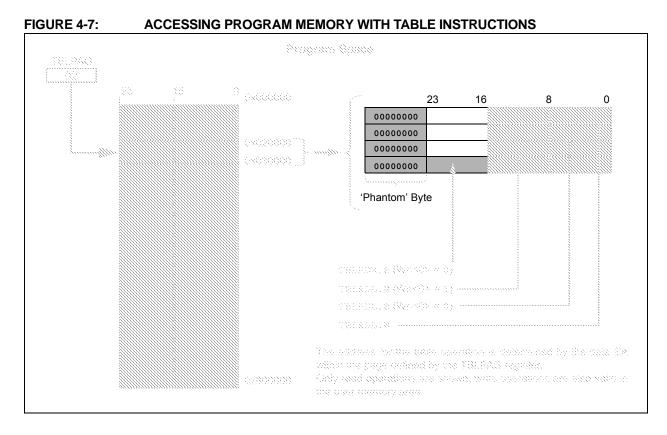
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.


 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

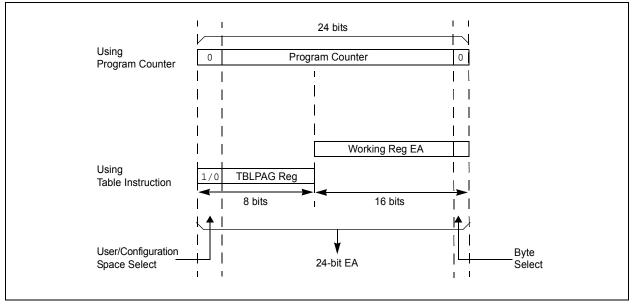
The PIC24HJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

NOTES:

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0						
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN						
bit 15							bit 8						
D 444 0	DAVA	D 444 0											
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC						
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN						
bit 7							bit (
Legend:		U = Unimpler	nented bit, rea	d as '0'									
R = Readable	e bit	W = Writable	bit	HS = Set in h	ardware	HC = Cleared	in hardware						
-n = Value at	POR	'1' = Bit is se		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	12CEN: 12Cx	Enable bit											
			e and configur	es the SDAx a	Ind SCLx pins a	as serial port pi	าร						
	0 = Disables	the I2Cx modu	le. All I ² C pins	are controlled	by port functio	ns.							
bit 14	Unimplemen	ted: Read as	0'										
bit 13		p in Idle Mode											
			eration when de		n Idle mode								
bit 12		-	ontrol bit (wher		l ² C slave)								
	1 = Release S			· op ol a lang a o									
	0 = Hold SCL	0 = Hold SCLx clock low (clock stretch)											
	$\frac{\text{If STREN} = 1}{\text{Dit is } \text{DAV}(i)}$	If STREN = 1: Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware clear											
					d of slave rece		lardware clea						
	If STREN = 0												
			only write '1'	to release cloc	k). Hardware c	lear at beginnir	ig of slave						
L:1 44	transmission.			- t. I t f (ID									
bit 11		-	al Managemer	-	MI) Enable bit								
	$0 = IPMI \mod$			CKIIOWIEUyeu									
bit 10	A10M: 10-bit	Slave Address	s bit										
		is a 10-bit slav											
		is a 7-bit slave											
bit 9		able Slew Rate											
		control disable											
bit 8		us Input Levels											
		-	ls compliant wi	ith SMBus spe	cification								
		MBus input th											
			e bit (when ope	-	-								
bit 7			a deneral call a	address is rece	ived in the I2C	xRSR							
bit 7	1 = Enable in												
bit 7	(module	iterrupt when a is enabled for call address di	reception)										
bit 7 bit 6	(module) 0 = General (is enabled for call address di	reception)		as I ² C slave)								
	(module) 0 = General o STREN: SCL Used in conju	is enabled for call address di x Clock Stretcl inction with SC	reception) sabled n Enable bit (w	hen operating	as I ² C slave)								

REGISTER 19-4: CIFCTRL: ECAN™ MODULE FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>			_	_	—	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	0-0	R/W-U	K/ VV-U	FSA<4:0>	R/W-0	R/ W-U
bit 7					107.4.02		bit 0
							bit o
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 12-5	100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	fers in DMA RA fers in DMA RA fers in DMA RA ers in DMA RAM ers in DMA RAM ers in DMA RAM ers in DMA RAM nted: Read as '0	M M 1 1				
bit 4-0	-	IFO Area Starts		ito			
UIL 4-U	FSA<4:0>: F 11111 = RB3 11110 = RB3 • • • • • •	31 buffer 30 buffer	with buller bi	15			

REGISTER 19-18: CiFMSKSEL1: ECAN™ MODULE FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-	0
F7M	SK<1:0>	F6MSł	<<1:0>	F5MS	K<1:0>	F4MSI	K<1:0>	
bit 15								bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-	.0
-	SK<1:0>	F2MSł		-	K<1:0>		K<1:0>	0
bit 7		1 2100	(1.0	1 1110	11.0	1 0100	-	bit 0
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-14		: Mask Source	e for Filter 7 b	it				
		ed; do not use ance Mask 2 reg	nisters contair	n mask				
	•	ance Mask 1 reg						
		ance Mask 0 reg						
bit 13-12		: Mask Source	e for Filter 6 b	it				
		ed; do not use ance Mask 2 reg	nistore contair	mask				
		ance Mask 2 reg						
	•	ance Mask 0 reg	•					
bit 11-10		: Mask Source	e for Filter 5 b	it				
		ed; do not use	niatoro contair	mool				
		ance Mask 2 reg ance Mask 1 reg						
		ance Mask 0 reg						
bit 9-8	F4MSK<1:0>	. Mask Source	e for Filter 4 b	it				
		ed; do not use						
	-	ance Mask 2 reg ance Mask 1 reg						
		ance Mask 0 reg						
bit 7-6	F3MSK<1:0>	. Mask Source	e for Filter 3 b	it				
		ed; do not use						
		ance Mask 2 reg ance Mask 1 reg						
		ance Mask 0 reg						
bit 5-4	-	: Mask Source	-					
		ed; do not use						
		ance Mask 2 reg ance Mask 1 reg						
		ance Mask 1 reg						
bit 3-2		. Mask Source						
		ed; do not use						
		ance Mask 2 reg						
		ance Mask 1 reg ance Mask 0 reg						
bit 1-0	-	: Mask Source	-					
		ed; do not use						
	10 = Accepta	ance Mask 2 reg						
		ance Mask 1 reg						
	00 = Accepta	ance Mask 0 reg	jisters contair	IIIIask				

Bit Field	Register	RTSP Effect	Description
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment
			Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
			Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
			(FOR 64K DEVICES) x11 = No Secure program Flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard Security; general program Flash segment starts at End of SS, ends at EOM 0x = High Security; general program Flash segment starts at End of ESS, ends at EOM
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected

TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

22.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The PIC24H instruction set is identical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 22-1 shows the general symbols used in describing the instructions.

The PIC24H instruction set summary in Table 22-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double word instructions, which were made double word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or double word instruction. Moreover, double word moves require two cycles. The double word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers \in {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

23.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

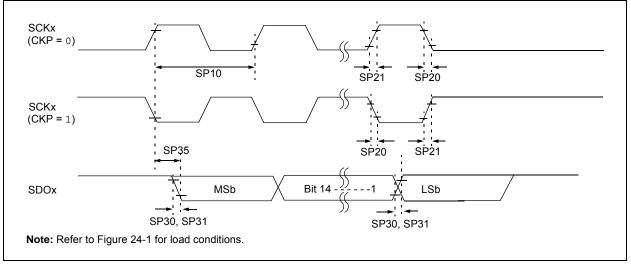
The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express


The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

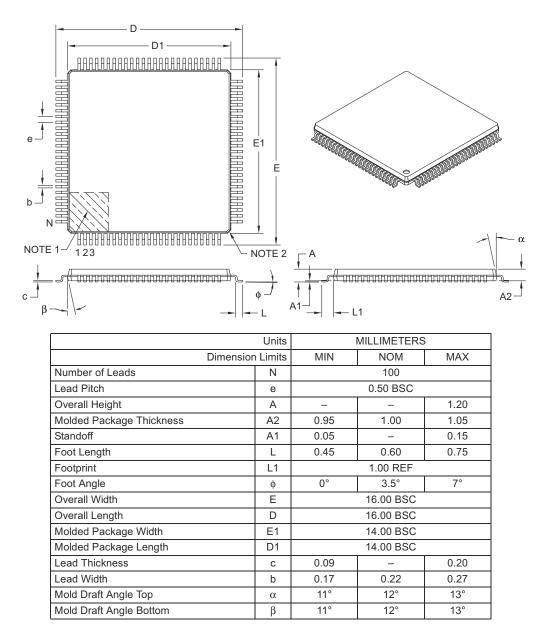

AC CHARAG	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Maximum Data Rate	Transmit Only Transmit/Receive		Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 24-29		—	0,1	0,1	0,1		
10 MHz	—	Table 24-30	—	1	0,1	1		
10 MHz	—	Table 24-31	—	0	0,1	1		
15 MHz	—	—	Table 24-32	1	0	0		
11 MHz	—	—	Table 24-33	1	1	0		
15 MHz	_	_	Table 24-34	0	1	0		
11 MHz			Table 24-35	0	0	0		

FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

F

•
Flash Program Memory59
Control Registers60
Operations60
Programming Algorithm62
RTSP Operation60
Table Instructions59
Flexible Configuration
FSCM
Delay for Crystal and PLL Clock Sources
Device Resets
н
High Temperature Electrical Characteristics
I/O Ports
Parallel I/O (PIO)141
Write/Read Timing
l ² C
Operating Modes
Registers
I ² C Module
I2C1 Register Map
I2C2 Register Map
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Registers
Input Change Notification Module
Instruction Addressing Modes
File Register Instructions
Fundamental Modes Supported
MCU Instructions
Move and Accumulator Instructions
Other Instructions
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Internal RC Oscillator
Use with WDT
Internet Address
Interrupt Control and Status Registers
IECx
IFSx
INTCON1
INTCON2
INTTREG
IPCx
Interrupt Setup Procedures
Initialization
Interrupt Disable
Interrupt Disable
Trap Service Routine
Interrupt Vector Table (IVT)
Interrupts Coincident with Power Save Instructions
interrupto confedent with rower dave instructions
J
JTAG Boundary Scan Interface
· · · · · · · · · · · · · · · · · · ·

Μ

Memory Organization
Modes of Operation
Disable
Initialization
Listen All Messages 181
Listen Only 181
Loopback 181
Normal Operation 181
MPLAB ASM30 Assembler, Linker, Librarian 238
MPLAB Integrated Development
Environment Software 237
MPLAB PM3 Device Programmer 240
MPLAB REAL ICE In-Circuit Emulator System 239
MPLINK Object Linker/MPLIB Object Librarian 238
Multi-Bit Data Shifter 28
Ν
NVM Module
Register Map52
0
Open-Drain Configuration
Output Compare 155
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD)
Pinout I/O Descriptions (table)
PMD Module
Register Map
POR and Long Oscillator Start-up Times
PORTA
Register Map
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 70 Register Map 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 51
Register Map50PORTB50Register Map50PORTC50PORTD8Register Map50PORTE50PORTE51PORTF71Register Map51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 70 Register Map 51 PORTF 71 Register Map 51 PORTG 51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Register Map51PORTG71Register Map51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE50Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD50Register Map50PORTE51Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB60Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 50 PORTE 50 PORTE 51 PORTG 51 PORTG 51 Power-Saving Features 133 Clock Frequency and Switching 133 Program Address Space 29 Construction 55 Data Access from Program Memory Using 58 Program Space Visibility 58 Data Access from Program Memory Using Table Instructions Using Table Instructions 57 Data Access from, Address Generation 56 Memory Map 29
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using Program Space Visibility58Data Access from Program Memory Using Table Instructions57Data Access from, Address Generation56Memory Map29Table Read Instructions29
Register Map50PORTBRegister MapRegister Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF8Register Map51PORTG51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDH57TBLRDL57
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE7Register Map51PORTF7Register Map51PORTG7Register Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using7Data Access from Program Memory29Table Read Instructions57TBLRDH57TBLRDH57Visibility Operation58Program Memory133Interrupt Vector30
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58