

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp210a-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24H PRODUCT FAMILIES

The PIC24H Family of devices is ideal for a wide variety of 16-bit MCU embedded applications. The device names, pin counts, memory sizes and peripheral availability of each device are listed below, followed by their pinout diagrams.

PIC24H Family Controllers

Device	Pins	Program Flash Memory (KB)	RAM ⁽¹⁾ (KB)	DMA Channels	Timer 16-bit	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	SPI	I²C™	CAN	I/O Pins (Max) ⁽²⁾	Packages
PIC24HJ64GP206A	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	1	0	53	PT, MR
PIC24HJ64GP210A	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ64GP506A	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT, MR
PIC24HJ64GP510A	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP206A	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ128GP210A	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ128GP506A	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT, MR
PIC24HJ128GP510A	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP306A	64	128	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ128GP310A	100	128	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP206A	64	256	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT, MR
PIC24HJ256GP210A	100	256	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP610A	100	256	16	8	9	8	8	0	2 ADC, 32 ch	2	2	2	2	85	PF, PT

Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.

2: Maximum I/O pin count includes pins shared by the peripheral functions.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0			
ALTIVT	DISI		_	_	—	—	—			
bit 15	~	-				•	bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	ALTIVT: Enable Alternate Interrupt Vector Table bit									
	1 = Use alterr	nate vector tab	le							
	0 = Use standard (default) vector table									
bit 14	DISI: DISI In	struction Statu	s bit							
	1 = DISI Inst	ruction is activ	e Ictive							
bit 13-5		ted: Read as '	0'							
bit 4	INT4FP: Exte	rnal Interrunt 4	• 1 Edge Detect	Polarity Selec	t bit					
bit i	1 = Interrupt of	on negative ed	ae	r olarity coloo						
	0 = Interrupt o	on positive edg	le							
bit 3	INT3EP: Exte	ernal Interrupt 3	B Edge Detect	Polarity Selec	t bit					
	1 = Interrupt o	on negative ed	ge							
	0 = Interrupt o	on positive edg	е							
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edge Detect	Polarity Selec	t bit					
	1 = Interrupt o	on negative ed	ge							
hit 1		an positive edg	l Edgo Dotoct	Polarity Soloo	t hit					
DIL	1 = Interrupt	n negative ed	ne Delect	Foldinty Selec						
	0 = Interrupt of	on positive edg	le							
bit 0	INT0EP: Exte	ernal Interrupt () Edge Detect	Polarity Selec	t bit					
	1 = Interrupt o	on negative ed	ge	2						
	0 = Interrupt o	on positive edg	e							

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE		
bit 15							bit 8		
DAMA		DAMO		DAMO					
						R/W-U	R/W-U SPI2EIE		
bit 7	IC4IE	ICSIE	DIVIASIE	CIL	UINALE	SFIZIE	bit 0		
Sit 1							Site		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set	1	'0' = Bit is cle	eared	x = Bit is unk	x = Bit is unknown		
bit 15	T6IE: Timer6	Interrupt Enab	le bit						
	0 = Interrupt i	request enable	abled						
bit 14	DMA4IE: DM	A Channel 4 D	ata Transfer C	Complete Inter	rupt Enable bit				
	1 = Interrupt i	request enable	d						
h# 40	0 = Interrupt i	request not ena	abled						
DIL 13 bit 12		ited: Reau as	U Dannal 8 Interr	unt Enable bit					
DIL 12	1 = Interrupt i	request enable	d	טיר בוומטופ טונ					
	0 = Interrupt i	request not ena	abled						
bit 11	OC7IE: Output	ut Compare Ch	nannel 7 Interr	upt Enable bit					
	1 = Interrupt i	request enable	d						
bit 10	OC6IE: Outpu	ut Compare Ch	ableu nannel 6 Interri	upt Enable bit					
	1 = Interrupt i	request enable	d						
	0 = Interrupt i	request not ena	abled						
bit 9	OC5IE: Outpu	ut Compare Ch	annel 5 Interr	upt Enable bit					
	1 = Interrupt i 0 = Interrupt i	request enable	d abled						
bit 8	IC6IE: Input (Capture Chann	el 6 Interrupt E	Enable bit					
	1 = Interrupt i	request enable	d						
h:+ 7	0 = Interrupt i	request not ena	abled						
DIT /	1 = Interrupt (Capture Chann	d s Interrupt E	Enable bit					
	0 = Interrupt i	request not enable	abled						
bit 6	IC4IE: Input (Capture Chann	el 4 Interrupt E	Enable bit					
	1 = Interrupt i	request enable	d						
bit 5		request not ena	abled	Enable bit					
DIUD	1 = Interrupt i	request enable	d						
	0 = Interrupt i	request not ena	abled						
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Inter	rupt Enable bit				
	1 = Interrupt i	request enable	d abled						
bit 3	C1IF. FCAN1	Event Interru	nt Enable hit						
	1 = Interrupt i	request enable	d						
	0 = Interrupt	request not ena	abled						

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		T1IP<2:0>		—		OC1IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		IC1IP<2:0>		—		INT0IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
							,				
bit 15	Unimpleme	ented: Read as '	D'								
bit 14-12	T1IP<2:0>:	TIIP<2:0>: Timer1 Interrupt Priority bits									
	111 = Inter	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	• 001 = Inter	rupt is priority 1									
	000 = Interrupt source is disabled										
bit 11	Unimpleme	Unimplemented: Read as '0'									
bit 10-8	OC1IP<2:0	>: Output Compa	re Channel 1	I Interrupt Prior	ity bits						
	111 = Inter	rupt is priority 7 (I	highest priori	ty interrupt)	5						
	•		•								
	•										
	• 001 = Inter	runt is priority 1									
	000 = Inter	rupt source is dis	abled								
bit 7	Unimpleme	ented: Read as '	o'								
bit 6-4	IC1IP<2:0>	: Input Capture C	Channel 1 Inte	errupt Priority b	vits						
	111 = Inter	rupt is priority 7 (I	highest priori	ty interrupt)							
	•										
	•										
	• 001 = Inter	rupt is priority 1									
	000 = Inter	rupt source is dis	abled								
bit 3	Unimpleme	ented: Read as '	o'								
bit 2-0	INT0IP<2:0	>: External Interr	upt 0 Priority	bits							
	111 = Inter	rupt is priority 7 (I	highest priori	ty interrupt)							
	•		•								
	•										
	• 001 = Inter	runt is priority 1									
	000 = Inter	rupt source is dis	abled								

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
—	—	—	—		ILR	<3:0>					
bit 15	·						bit 8				
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
				VECNUM<6:0	>						
bit 7	•						bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						d as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown				
L											
bit 15-12	Unimplement	ted: Read as '	0'								
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits							
	1111 = CPU I	nterrupt Priorit	y Level is 15								
	•										
	•										
	0001 = CPU li	0001 = CPU Interrupt Priority Level is 1									
	0000 = CPU I	nterrupt Priorit	y Level is 0								
bit 7	Unimplement	ted: Read as '	0'								
bit 6-0	VECNUM<6:0	>: Vector Num	ber of Pendir	ng Interrupt bits	;						
	1111111 = In	terrupt Vector	pending is nu	mber 135							
	•										
	•										
	0000001 = In	terrupt Vector	pending is nu	mber 9							
	0000000 = In	terrupt Vector	pending is nu	mber 8							

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and, therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The PIC24HJXXXGPX06A/X08A/X10A peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA SUPPORT

Peripheral	IRQ Number
INTO	0
Input Capture 1	1
Input Capture 2	5
Output Compare 1	2
Output Compare 2	6
Timer2	7
Timer3	8
SPI1	10
SPI2	33
UART1 Reception	11
UART1 Transmission	12
UART2 Reception	30
UART2 Transmission	31
ADC1	13
ADC2	21
ECAN1 Reception	34
ECAN1 Transmission	70
ECAN2 Reception	55
ECAN2 Transmission	71

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- · Word or byte sized data transfers
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral
- Indirect Addressing of DMA RAM locations with or without automatic post-increment
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral
- One-Shot Block Transfers Terminating DMA transfer after one block transfer
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately
- Automatic or manual initiation of block transfers
- Each channel can select from 19 possible sources of data sources or destinations

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			DSAD)R<15:8>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			DSA	DR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at P0	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown	

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS

EXAMPLE

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: PIC24HJXXXGPX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	-
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

NEOIOTEN.									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
T5MD	T4MD	T3MD	T2MD	T1MD	<u> </u>	—			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾		
bit 7							bit 0		
r									
Legend:									
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN		
bit 15	T5MD: Timer	5 Module Disab	le bit						
	1 = 1 mer5 m 0 = 1 mer5 m	odule is disable odule is enable	d d						
hit 14	T4MD. Timer	1 Module Disah	le hit						
bit 14	1 = Timer4 mc	odule is disable	ed						
	0 = Timer4 mo	odule is enable	d						
bit 13	T3MD: Timer3	3 Module Disab	le bit						
	1 = Timer3 mo	odule is disable	ed						
	0 = Timer3 module is enabled								
bit 12	T2MD: Timer2	2 Module Disab	le bit						
	1 = 1 mer 2 me 0 = 1 mer 2 me	odule is disable odule is enable	d d						
bit 11	T1MD. Timer1	I Module Disah	u Ie hit						
	1 = Timer1 mc	odule is disable	ed						
	0 = Timer1 mc	odule is enable	d						
bit 10-8	Unimplement	ted: Read as 'd)'						
bit 7	I2C1MD: I ² C1	Module Disab	le bit						
	$1 = I^2C1 \mod 0$ $0 = I^2C1 \mod 0$	ule is disabled ule is enabled							
bit 6	U2MD: UART	2 Module Disal	ble bit						
	1 = UART2 m	odule is disable	ed						
	0 = UART2 m	odule is enable	ed						
bit 5	U1MD: UART	1 Module Disa	ble bit						
	1 = UART1 m 0 = UART1 m	odule is disable odule is enable	ed ed						
bit 4	SPI2MD: SPI2	2 Module Disat	ole bit						
	1 = SPI2 mod 0 = SPI2 mod	ule is disabled ule is enabled							
bit 3	SPI1MD: SPI	1 Module Disab	ole bit						
	1 = SPI1 mod	ule is disabled							
	0 = SPI1 mod	ule is enabled							
bit 2	C2MD: ECAN	2 Module Disa	ble bit						
	1 = ECAN2 m 0 = ECAN2 m	odule is disable odule is enable	ed ed						

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

r										
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON		TSIDL	—		—	—				
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS	S<1:0>		TSYNC	TCS				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	TON: Timer1	On bit								
	1 = Starts 16-	bit Timer1								
	0 = Stops 16-I	bit Timer1								
bit 14	Unimplemented: Read as '0'									
bit 13	TSIDL: Stop in Idle Mode bit									
	1 = Discontinu 0 = Continue	ue module oper module operati	ration when d on in Idle mo	evice enters Id de	lle mode					
bit 12-7	Unimplemented: Read as '0'									
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit									
	When TCS =	<u>1:</u> pred.								
	When TCS =	0:								
	1 = Gated tim 0 = Gated tim	e accumulatior e accumulatior	n enabled n disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits						
	11 = 1:256									
	10 = 1:64									
	01 = 1:8									
h it 0	00 = 1.1	ted: Deed ee W	_ '							
) alc lancet Course	abranization C	ala at hit					
DIL Z	When TCS -		ock input Synd	chronization Se						
	1 = Synchroni	<u>⊥.</u> ize external clo	ck input							
	0 = Do not sy	nchronize exter	rnal clock inpu	ut						
	When TCS =	<u>0:</u>								
	This bit is igno	ored.								
bit 1	TCS: Timer1	Clock Source S	Select bit							
	1 = External c	lock from pin T	1CK (on the	rising edge)						
hit 0		UCK (FCY)	, '							
	Unimplement	ieu: Reau as 1	J							

r							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS	S<1:0>	T32		TCS ⁽¹⁾	—
bit 7						bit 0	
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read		as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown	
bit 15 TON: Timerx On bit $ \frac{When T32 = 1:}{1 = Starts 32-bit Timerx/y} 0 = Stops 32-bit Timerx/y \frac{When T32 = 0:}{1 = Starts 16-bit Timerx} $							
bit 14	Unimplemented: Read as '0'						
bit 13	TSIDL: Stop in	n Idle Mode bit					
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 						
bit 12-7	Unimplement	ted: Read as ')'				
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled						
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers						
bit 2	Unimplement	ted: Read as ')'				
bit 1	TCS: Timerx Clock Source Select bit ⁽¹⁾						
	 1 = External clock from pin TxCK (on the rising edge) 0 = Internal clock (Fcr) 						
bit 0	Unimplement	ted: Read as 'o)'				

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0
r							
Legend:		U = Unimpler	nented bit, rea	ad as '0'		C = Clear on	ly bit
R = Readable bit		W = Writable	bit	HS = Set in h	nardware	HSC = Hardwa	are set/cleared
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = NACK received from slave 0 = ACK received from slave Hardware set or clear at end of slave Acknowledge. 						
bit 14	 TRSTAT: Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. 						
bit 13-11	Unimplemen	Unimplemented: Read as '0'					
bit 10	BCL: Master	Bus Collision [Detect bit				
	 1 = A bus collision has been detected during a master operation 0 = No collision Hardware set at detection of bus collision. 						
bit 9	GCSTAT: Ger	neral Call Statu	is bit				
	 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. 					ection.	
bit 8	ADD10: 10-B	it Address Stat	us bit				
	 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection. 						
bit 7	IWCOL: Write	e Collision Dete	ect bit				
	1 = An attemp 0 = No collision Hardware set	ot to write the I on at occurrence	2CxTRN regis	ster failed beca CxTRN while b	ause the I ² C mo ousy (cleared by	dule is busy software).	
bit 6	I2COV: Recei	ive Overflow F	lag bit				
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). 						
bit 5	D_A: Data/Ac	ldress bit (whe	n operating a	s I ² C slave)			
	 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte. 						
bit 4	P: Stop bit						
	1 = Indicates 0 = Stop bit w Hardware set	that a Stop bit as not detecte or clear when	has been det d last Start, Repeat	ected last ed Start or Sto	p detected.		

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 19-8: CIEC: ECAN™ MODULE TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERR	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERR	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			:	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			iown	
							,

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 RERRCNT<7:0>: Receive Error Count bits

REGISTER 19-18: CiFMSKSEL1: ECAN™ MODULE FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MS	K<1:0>	F6MSK	<1:0>	F5MS	SK<1:0>	F4MSK<	:1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MS	K<1:0>	F2MSK	<1:0>	F1MS	SK<1:0>	FUMSK<	:1:0> hit 0
							DILU
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared		wn
bit 15-14	F7MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 7 b isters contair isters contair isters contair	it i mask i mask i mask			
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask						
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask						
bit 9-8	F4MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 4 bi isters contair isters contair isters contair	it n mask n mask n mask			
bit 7-6	F3MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 3 bi isters contair isters contair isters contair	t 1 mask 1 mask 1 mask			
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask						
bit 3-2	F1MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 1 bi isters contair isters contair isters contair	t 1 mask 1 mask 1 mask			
bit 1-0	FOMSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 0 b sters contair sters contair sters contair	it i mask i mask i mask			

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 16. "Analog-to-Digital Converter (ADC)" (DS70183), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to 32 Analog-to-Digital input channels. These devices also have up to 2 Analog-to-Digital converter modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Two result alignment options (signed/unsigned)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the Analog-to-Digital Converter can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device.

A block diagram of the Analog-to-Digital Converter is shown in Figure 20-1.

20.2 Analog-to-Digital Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on the ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit

2.

b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, the DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15						•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—			DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable		bit	U = Unimplei	mented bit, rea	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is		x = Bit is unkr	nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description		
#text	Means literal defined by "text"		
(text)	Means "content of text"		
[text]	Means "the location addressed by text"		
{ }	Optional field or operation		
<n:m></n:m>	Register bit field		
.b	Byte mode selection		
.d	Double Word mode selection		
.S	Shadow register select		
.w	Word mode selection (default)		
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$		
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero		
Expr	Absolute address, label or expression (resolved by the linker)		
f	File register address ∈ {0x00000x1FFF}		
lit1	1-bit unsigned literal ∈ {0,1}		
lit4	4-bit unsigned literal ∈ {015}		
lit5	5-bit unsigned literal ∈ {031}		
lit8	8-bit unsigned literal ∈ {0255}		
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode		
lit14	14-bit unsigned literal ∈ {016384}		
lit16	16-bit unsigned literal ∈ {065535}		
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'		
None	Field does not require an entry, may be blank		
PC	Program Counter		
Slit10	10-bit signed literal \in {-512511}		
Slit16	16-bit signed literal ∈ {-3276832767}		
Slit6	6-bit signed literal \in {-1616}		
Wb	Base W register ∈ {W0W15}		
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }		
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }		
Wm,Wn	Dividend, Divisor working register pair (direct addressing)		
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}		
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}		
Wn	One of 16 working registers ∈ {W0W15}		
Wnd	One of 16 destination working registers ∈ {W0W15}		
Wns	One of 16 source working registers ∈ {W0W15}		
WREG	W0 (working register used in file register instructions)		
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }		
Wso	Source W register ∈		
	{ Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }		

FIGURE 24-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 24-19: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

