

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp210at-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-17: DMA REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4								Р	AD<15:0>								0000
DMA5CNT	03C6		—	—	_	_	_					CN	Г<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	—	AMODE<1:0> MODE<1:0> 0					0000				
DMA6REQ	03CA	FORCE	—	—	—	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC		STA<15:0> 0000															
DMA6STB	03CE		STB<15:0> 0000								0000							
DMA6PAD	03D0		PAD<15:0> 0000															
DMA6CNT	03D2		—	—	_	_	_					CN	Г<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD)E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	—	—	—	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	STA<15:0>								0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								Р	AD<15:0>								0000
DMA7CNT	03DE		—	—	_	_	_					CN	Г<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	_		—	—		LSTCH		•	PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4		DSADR<15:0> 007							0000								
Legend:	=	unimpleme	ented, read	as '0'. Res	et values a	re shown in	hexadecim	al for PinH	ligh devices	5.								

PIC24HJXXXGPX06A/X08A/X10A

TABLE 4-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 OR 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY

																-		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
C1CTRL1	0400	—	—	CSIDL	ABAT	—	R	EQOP<2:0)>	OPI	MODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	—	—	_	—	_	_	—	—	_	—	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	_	_		F	FILHIT<4:0>			_				CODE<6:0>	>			0000
C1FCTRL	0406	0	DMABS<2:0)>	—	—		—	—	_	—	-			FSA<4:0>			0000
C1FIFO	0408	_	_			FBP<	<5:0>			_	— — FNRB<5:0>					0000		
C1INTF	040A	_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_	_	_	_	_	_	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E		-		TERRCI	NT<7:0>					RERRCNT<7:0>					0000		
C1CFG1	0410	_	_	_	_	_	_	_	—	SJW<	1:0>			BRP<	<5:0>			0000
C1CFG2	0412	_	WAKFIL	-	_	_	SE	G2PH<2:0	0>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:)>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MS	K<1:0>	F6MS	<<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MSI	<<1:0>	F1MSk	<1:0>	F0MS	K<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	SK<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSk	<1:0>	F8MS	K<1:0>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming operations	S	
	MOV	#0x4001, W0	i	
	MOV	W0, NVMCON	; Initialize NVMCON	
;	Set up a poir	nter to the first program memory	y location to be written	
;	program memo	ry selected, and writes enabled		
	MOV	#0x0000, W0	i	
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR	
	MOV	#0x6000, W0	; An example program memory address	
;	Perform the '	TBLWT instructions to write the	latches	
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	; Write PM low word into program latch	
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch	
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	; Write PM low word into program latch	
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch	
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	i	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	; Write PM low word into program latch	
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch	
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	i	
	TBLWTL	W2, [W0]	; Write PM low word into program latch	
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch	

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 : for next 5 instructions
MOV	#0x55, W0	,
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

REGISTER 7-10:	IEC0: INTERRUPT ENABLE CONTROL REGISTER 0
----------------	---

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE					
bit 7							bit 0					
Logondy												
R = Readabl	le hit	W = Writable	bit	= Inimpler	nented hit rea	d as '0'						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	= Bit is unknown					
				e Bitle die	alou							
bit 15	Unimplemer	nted: Read as	ʻ0'									
bit 14	DMA1IE: DM	IA Channel 1 E)ata Transfer (Complete Interr	upt Enable bit							
	1 = Interrupt	request enable	d									
	0 = Interrupt	request not en	abled									
bit 13	AD1IE: ADC	1 Conversion (Complete Inter	rupt Enable bit								
	0 = Interrupt	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 12	U1TXIE: UA	RT1 Transmitte	r Interrupt Ena	able bit								
	1 = Interrupt	request enable	d									
	0 = Interrupt	0 = Interrupt request not enabled										
bit 11	U1RXIE: UA	RT1 Receiver I	nterrupt Enab	le bit								
	1 = Interrupt 0 = Interrupt	request enable	abled									
bit 10	SPI1IE: SPI1	Event Interrup	ot Enable bit									
	1 = Interrupt	request enable	ed									
	0 = Interrupt	request not en	abled									
bit 9	SPI1EIE: SP	IE: SPI1 Error Interrupt Enable bit										
	$\perp = Interrupt$ 0 = Interrupt	 a Interrupt request enabled a Interrupt request not enabled 										
bit 8	T3IE: Timer3	Interrupt Enat	ole bit									
	1 = Interrupt	Interrupt request enabled										
	0 = Interrupt	0 = Interrupt request not enabled										
bit 7	T2IE: Timer2	Interrupt Enat	ole bit									
	0 = Interrupt	1 = Interrupt request enabled 0 = Interrupt request not enabled										
bit 6	OC2IE: Outp	out Compare Cl	nannel 2 Interr	upt Enable bit								
	1 = Interrupt	request enable	ed									
	0 = Interrupt	request not en	abled									
bit 5	IC2IE: Input	Capture Chanr	el 2 Interrupt	Enable bit								
	1 = Interrupt 0 = Interrupt	request enable	ed abled									
bit 4	DMA0IE: DM	1A Channel 0 E)ata Transfer (Complete Interr	upt Enable bit							
	1 = Interrupt	request enable	ed									
	0 = Interrupt	request not en	abled									
bit 3	T1IE: Timer1	Interrupt Enat	ole bit									
	$\perp = interrupt$ 0 = Interrupt	request enable	abled									

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

r							,	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—		U1RXIP<2:0>		—		SPI1IP<2:0>		
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
		SPI1EIP<2:0>				T3IP<2:0>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplei	mented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit				0° = Bit is cleared x = Bit is unknown				
							J	
bit 15	Unimplem	ented: Read as ')'					
bit 14-12	U1RXIP<2	JIRXIP<2:0>: UART1 Receiver Interrupt Priority bits						
	111 = Inter	rrupt is priority 7 (I	niahest priori	tv interrupt)				
	•	-FF2 (J	- J				
	•							
	• 001 - Intor	rupt is priority 1						
	001 = Inter	rrupt is priority i rrupt source is dis	abled					
bit 11	Unimplem	ented: Read as ')'					
bit 10-8	SPI1IP<2:0	0>: SPI1 Event Int	errupt Priorit	v bits				
	111 = Inter	rrupt is priority 7 (I	niahest priori	tv interrupt)				
	•			·) ······				
	•							
	• 001 - Intor	rupt is priority 1						
	001 - Inter	rrupt is priority i rrupt source is dis	abled					
bit 7	Unimplem	ented: Read as ')'					
bit 6-4	SPI1EIP<2	2:0>: SPI1 Frror Ir	Iterrupt Priori	tv bits				
	111 = Inter	rrupt is priority 7 (I	niahest priori	ty interrupt)				
	•	- Fr - Fr - 5 (J	- J				
	•							
	• 001 - Intor	rupt is priority 1						
	001 = Inter	rrupt is priority i rrupt source is dis	abled					
bit 3	Unimplem	ented: Read as ')'					
bit 2-0	T3IP<2:0>	: Timer3 Interrupt	Priority bits					
5.12.0	111 = Inter	rrupt is priority 7 (I	niahest priorit	tv interrupt)				
	•			·) ······				
	•							
	•	ruptic priority 4						
	001 = inter	rrupt is priority 1	abled					

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			STA	<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			STA	\<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STI	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected

9.1 CPU Clocking System

There are seven system clock options provided by the PIC24HJXXXGPX06A/X08A/X10A:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 21.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJXXXGPX06A/ X08A/X10A architecture.

Instruction execution speed or device operating frequency, FCY, is calculated, as shown in Equation 9-1:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

NOTES:

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Hardware Clearable bit				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled

REGISTER 18-2: Uz	xSTA: UARTx STATUS AN	ID CONTROL REGISTER
-------------------	-----------------------	---------------------

R/M-0	R/\\/_0	R/W-0	U_0	R/W-0 HC	R/\\/_0	R-0	R-1
UTXISEI 1				UTXBRK		UTXBE	TRMT
bit 15	UTAIL	OTAIOLLO		OTABLIC	OTALI	0 I/(BI	bit 8
2.1.10							
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7				1		I	bit 0
Legend:		HC = Hardwar	e cleared			C = Clear onl	y bit
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
 bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits = Reserved; do not use = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed = Interrupt when a character is transferred to the Transmit Shift Register; all transmit operations are completed = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) bit 14 UTXINV: Transmit Polarity Inversion bit If IREN = 0: = UXTX Idle state is '0' = UXTX Idle state is '1' If IREN = 1: = IrDA[®] encoded UXTX Idle state is '1' 							esult, the ansmit s there is
bit 12	Unimplement	ted: Read as 'o	3				
bit 11	UTXBRK: Tra	ansmit Break bit					
bit 10	 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. LVTX pin controlled 						
	by port.						
bit 9	UTXBF: Trans 1 = Transmit 0 = Transmit	smit Buffer Full buffer is full buffer is not ful	Status bit (re	ad-only) e more characte	er can be writter	٦	
bit 8	TRMT: Transr	nit Shift Registe	er Empty bit (read-only)			
	1 = Transmit 0 = Transmit	Shift Register is Shift Register i	empty and tr s not empty, a	ransmit buffer is a transmission	s empty (the last is in progress o	transmission h r queued	as completed)
bit 7-6	 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters. 						

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

20.6 ADC Control Registers

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2)

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM		AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

Legend: HC = Cleared by hardware		HS = Set by hardware			
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	ADON: ADC Operating Mode bit
	1 = ADC module is operating
	0 = ADC module is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer.
	 DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-Bit or 12-Bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed Integer (DOUT = SSSS SSSA dada adad, where S = .NOT.d<9>) 00 = Integer (DOUT = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)
	00 = Integer (DOUT = 0000 dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	101 = Reserved
	100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion
	011 = Reserved 010 = CP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion
	001 = Active transition on INTO pin ends sampling and starts conversion

REGISTER 20-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3,4)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|---------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 | R/\\/_0 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PCFG<31:16>: ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
- 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

23.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

DC CHARACTER	$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Typical ⁽²⁾	Мах	Doze Ratio Units Conditions			nditions	
Doze Current (IDC	DZE) ⁽¹⁾						
DC73a	11	35	1:2	mA			40 MIPS
DC73f	11	30	1:64	mA	-40°C	3.3V	
DC73g	11	30	1:128	mA			
DC70a	42	50	1:2	mA		3.3V	40 MIPS
DC70f	26	30	1:64	mA	+25°C		
DC70g	25	30	1:128	mA			
DC71a	41	50	1:2	mA			
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	24	30	1:128	mA			
DC72a	42	50	1:2	mA			
DC72f	26	30	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	25	30	1:128	mA			

TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail with overshoot/undershoot < 250 mV
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 24-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_		10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 24-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
			$-40^{\circ}C \le TA \le +00^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	—	10	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	—	—		ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_			ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B