

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp210at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 3.** "Data Memory" (DS70202) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The PIC24HJXXXGPX06A/X08A/X10A architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the PIC24HJXXXGPX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.4** "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24HJXXXGPX06A/X08A/ X10A family of devices are shown in Figure 4-1.

	PIC24HJ64XXXXXA	PIC24HJ128XXXXXA	PIC24HJ256XXXXXA	
Ā	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000
T	Reset Address	Reset Address	Reset Address	- 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FF
	Reserved	Reserved	Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
Space	User Program Flash Memory (22K instructions)	User Program	User Program	0x000200
ory S		(44K instructions)	(88K instructions)	UXUUACUU
Mem				0x0157FE
Jser	Unimplemented			00010000
	(Read '0's)	Unimplemented		
		(Read '0's)		0x02ABFE 0x02AC00
			Inimplemented	0,02,1000
			(Read (0'a)	
Ļ			(Read 0 S)	0
			+	0x800000
Space	Reserved	Reserved	Reserved	
nory	Device Configuration	Device Configuration	Device Configuration	0xF7FFFE 0xF80000
Mer	Registers	Registers	Registers	0xF80017 0xF80010
Configuration	Reserved	Reserved	Reserved	
	DEVID (2)	DEVID (2)	DEVID (2)	0xFEFFFE 0xFF0000

FIGURE 4-1: PROGRAM MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A FAMILY DEVICES

IABLE	4-6:	IIIVIE	R REG	ISTER N	IAP													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102		Period Register 1									FFFF						
T1CON	0104	TON		TSIDL		_	—	_	_	—	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tin	ner3 Holding	Register (fo	r 32-bit time	r operations of	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C		Period Register 2 FFFF								FFFF							
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON		TSIDL		_	—	_	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T3CON	0112	TON	—	TSIDL		—	—	_	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116		Timer5 Holding Register (for 32-bit operations only)									xxxx						
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	—	TSIDL		_	—	—	—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL		_	—	—	—	—	TGATE	TCKP	S<1:0>	_	—	TCS	—	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124							Timer7 Hold	ing Register	(for 32-bit o	perations only	y)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON	—	TSIDL		_	—	—	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T7CON	012E	TON	—	TSIDL		—	—	—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132							Timer9 Hold	ing Register	(for 32-bit o	perations only	y)						xxxx
TMR9	0134								Timer9	Register								0000
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period I	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T9CON	013C	TON	—	TSIDL	—	—	—	—	_	—	TGATE	TCKP	S<1:0>	—	—	TCS	_	0000

. . TIMED DEGIGTED MAD

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	See Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—		1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
MCLR	Any Clock	TRST	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any clock	Trst	—	-	3
Illegal Opcode	Any Clock	Trst	—	-	3
Uninitialized W	Any Clock	Trst			3
Trap Conflict	Any Clock	TRST		_	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.

- 3: TRST = Internal state Reset time (20 μs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL lock time (20 μ s nominal).
- **6:** TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the Reset signal is released:

- · The oscillator circuit has not begun to oscillate
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used)
- The PLL has not achieved a lock (if PLL is used)

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when the Reset signal is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0					
ALTIVT	DISI		_	_	—	—	—					
bit 15	~	-				•	bit 8					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP					
bit 7							bit 0					
Legend:												
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	ALTIVT: Enat	ole Alternate In	terrupt Vector	Table bit								
	1 = Use alterr	nate vector tab	le									
	0 = Use stand	lard (default) v	ector table									
bit 14	DISI: DISI In	struction Statu	s bit									
	1 = DISI Inst	ruction is activ	e Ictive									
bit 13-5		ted: Read as '	0'									
bit 4	INT4FP: Exte	rnal Interrunt 4	• 1 Edge Detect	Polarity Selec	t bit							
bit i	1 = Interrupt of	on negative ed	ae	r olarity coloo								
	0 = Interrupt o	on positive edg	le									
bit 3	INT3EP: Exte	ernal Interrupt 3	B Edge Detect	Polarity Selec	t bit							
	1 = Interrupt o	on negative ed	ge									
	0 = Interrupt o	on positive edg	е									
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edge Detect	Polarity Selec	t bit							
	1 = Interrupt o	on negative ed	ge									
hit 1		an positive edg	l Edgo Dotoct	Polarity Soloo	t hit							
DIL	1 = Interrupt	n negative ed	ne Delect	Folding Selec								
	0 = Interrupt of	on positive edg	le									
bit 0	INT0EP: Exte	ernal Interrupt () Edge Detect	Polarity Selec	t bit							
	1 = Interrupt o	on negative ed	ge	2								
	0 = Interrupt o	on positive edg	e									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN
		(ad. Daad as (o'				
DIT 15-8		ted: Read as			- h:t		
DIT /	CZIXIE: ECA	NZ Transmit D	ata Request I	nterrupt Enabl	e dit		
	\perp = Interrupt r 0 = Interrupt r	request enabled	a abled				
bit 6	C1TXIE: ECA	N1 Transmit D	ata Request I	nterrupt Enabl	e bit		
	1 = Interrupt r	equest enable	d .				
	0 = Interrupt r	equest not ena	abled				
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	Complete Enab	le Status bit		
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 4	DMA6IE: DM	A Channel 6 D	ata Transfer C	Complete Enab	ole Status bit		
	1 = Interrupt r	request enable	d bled				
hit 3	Unimplemen	ted: Read as '	0'				
bit 2		2 Error Interru	∘ nt Enable bit				
Dit 2	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit				
	1 = Interrupt r	equest enable	d				
	0 = Interrupt r	request not ena	abled				
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

	- • • • •	D	D 4 • / •		B	D/11/2	D 444 A
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T8IP<2:0>		—		MI2C2IP<2:0>	
bit 15							bit 8
							ī
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SI2C2IP<2:0>		—		T7IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	Unimplem	ented: Read as ')'				
bit 14-12	T8IP<2:0>:	Timer8 Interrupt	Priority bits				
	111 = Inter	rupt is priority 7 (I	nighest priorif	ty interrupt)			
	•						
	•						
	• 001 = Inter	runt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 11	Unimplem	ented: Read as ')'				
bit 10-8	MI2C2IP<2	::0>: I2C2 Master	Events Inter	rupt Priority bits	S		
	111 = Inter	rupt is priority 7 (I	nighest priorit	ty interrupt)			
	•		0	, i ,			
	•						
	• 001 - Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 7	Unimplem	ented: Read as ')'				
bit 6-4	SI2C2IP<2	:0>: I2C2 Slave E	vents Interru	ot Priority bits			
	111 = Inter	rupt is priority 7 (I	niahest priorit	v interrupt)			
	•		J	J			
	•						
	•	rupt is priority 1					
	001 = Inter	rupt is priority i rupt source is dis	abled				
bit 3	Unimplem	ented: Read as '(מגייט מ ז'				
bit 2-0		Timer7 Interrunt	Priority hits				
Dit 2 0	111 = Inter	runt is priority 7 (l	niahest priorit	v interrunt)			
	•		ingricot priori				
	•						
	•	munt in priority 4					
	001 = Inter	rupt is priority 1	abled				

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PAD	<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PAE)<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un					x = Bit is unkr	nown			

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
—	—	—		—	—	CNT<9:8> ⁽²⁾					
bit 15 bit 8											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CNT<7:0> ⁽²⁾											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - 2: Number of DMA transfers = CNT<9:0> + 1.

bit 7

bit 0

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0			
	_	CSIDL	ABAT			REQOP<2:0>	-			
bit 15							bit 8			
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0			
(OPMODE<2:0>	1	_	CANCAP	—	—	WIN			
bit 7							bit 0			
Legend:		r = Bit is Rese	erved							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						own				
bit 15-14 Unimplemented: Read as '0' bit 13 CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode										
	0 = Continue	module operat	ion in Idle mo	de						
bit 12	ABAT: Abort All Pending Transmissions bit									
 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted 										
bit 11	Reserved: Do	o not use								
bit 10-8	 REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode 100 = Reserved - do not use 101 = Reserved - do not use 100 = Set Configuration mode 011 = Set Listen Only Mode 010 = Set Loopback mode 001 = Set Disable mode 									
bit 7-5	000 = Set Normal Operation mode it 7-5 OPMODE<2:0>: Operation Mode bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode									
bit 4	Unimplement	ted: Read as '								
bit 3	CANCAP: C/	AN Message R	eceive Timer	Capture Event	t Enable bit					
	1 = Enable inp 0 = Disable C	out capture bas AN capture	sed on CAN n	nessage receiv	/e					
bit 2-1	Unimplement	ted: Read as '	0'							
bit 0	WIN: SFR Ma 1 = Use filter v 0 = Use buffe	ap Window Se window r window	lect bit							

REGISTER 19-1: CiCTRL1: ECAN™ MODULE CONTROL REGISTER 1

REGISTER 19-20: CIRXMnSID: ECAN™ MODULE ACCEPTANCE FILTER MASK n STANDARD **IDENTIFIER**

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			SID	<10:3>					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
	SID<2:0>		—	MIDE	—	EID<1	17:16>		
bit 7							bit 0		
l egend:]		
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-5	SID<10:0>: \$	Standard Identi	fier bits						
	1 = Include bi	it SIDx in filter	comparison						
	0 = Bit SIDx i	s don't care in	filter compari	son					
bit 4	Unimplemen	ted: Read as '	0'						
bit 3	MIDE: Identi	fier Receive Mo	ode bit						
	1 = Match or	nly message typ	oes (standard	l or extended a	ddress) that cor	respond to EXI	DE bit in filter		
	0 = Match ei	ther standard o	or extended a	ddress messag	e if filters match				
	(I.e., If (F	(Me)	essage SID) (or if (Filter SID/I	=ID) = (Messag	e SID/EID))			
bit 2	Unimplemen	ted: Read as '	0'						
bit 1-0	EID<17:16>:	Extended Ider	ntifier bits						
	1 = Include b	it EIDx in filter	comparison						
	0 = Bit EIDx	is don't care in	filter compar	ison					

REGISTER 19-21: CIRXMnEID: ECAN™ TECHNOLOGY ACCEPTANCE FILTER MASK n EXTENDED **IDENTIFIER**

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bi	it	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

Bit Field	Register	RTSP Effect	Description
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment
			Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
			Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
			(FOR 64K DEVICES) x11 = No Secure program Flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard Security; general program Flash segment starts at End of SS, ends at EOM 0x = High Security; general program Flash segment starts at End of ESS, ends at EOM
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected

TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Base Assembly # of # of Status Flags Instr Assembly Syntax Description Mnemonic Words Cycles Affected # 47 Relative Call RCALL RCALL 1 2 None Expr RCALL Computed Call 1 2 None Wn 48 REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None REPEAT Repeat Next Instruction (Wn) + 1 times 1 1 None Wn 1 1 49 RESET RESET Software device Reset None 50 RETFIE RETFIE Return from interrupt 1 3 (2) None 51 RETLW #lit10,Wn Return with literal in Wn 1 3 (2) None RETLW 52 1 RETURN RETURN Return from Subroutine 3 (2) None 53 RLC RLC f = Rotate Left through Carry f 1 1 C,N,Z f RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z 54 f = Rotate Left (No Carry) f 1 1 N,Z RLNC RUNC f 1 RLNC f,WREG WREG = Rotate Left (No Carry) f 1 N,Z RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z 55 RRC RRC f = Rotate Right through Carry f 1 1 C,N,Z f WREG = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG RRC Wd = Rotate Right through Carry Ws 1 1 C,N,Z Ws,Wd 56 RRNC RRNC f = Rotate Right (No Carry) f 1 1 N,Z f WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG Wd = Rotate Right (No Carry) Ws 1 1 N,Z RRNC Ws,Wd 1 C,N,Z 57 SE SE Ws,Wnd Wnd = sign-extended Ws 1 58 SETM SETM f f = 0xFFFF1 1 None WREG = 0xFFFF 1 1 SETM WREG None Ws = 0xFFFF 1 SETM Ws 1 None 59 SL SL f f = Left Shift f 1 1 C,N,OV,Z SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z Wd = Left Shift Ws 1 1 C,N,OV,Z SL Ws,Wd Wnd = Left Shift Wb by Wns 1 1 SL N.Z Wb, Wns, Wnd SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z 60 SUB SUB f = f – WREG 1 1 C,DC,N,OV,Z f WREG = f - WREG 1 1 C,DC,N,OV,Z SUB f,WREG Wn = Wn - lit10SUB #lit10,Wn 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb - Ws1 1 C,DC,N,OV,Z Wd = Wb - lit5 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd 61 SUBB $f = f - WREG - (\overline{C})$ C,DC,N,OV,Z 1 1 SUBB f WREG = $f - WREG - (\overline{C})$ 1 SUBB f,WREG 1 C,DC,N,OV,Z $Wn = Wn - lit10 - (\overline{C})$ 1 C,DC,N,OV,Z 1 SUBB #lit10,Wn SUBB $Wd = Wb - Ws - (\overline{C})$ 1 1 C,DC,N,OV,Z Wb,Ws,Wd SUBB Wb,#lit5,Wd $Wd = Wb - lit5 - (\overline{C})$ 1 1 C,DC,N,OV,Z 62 SUBR f = WREG - f 1 1 C,DC,N,OV,Z SUBR f WREG = WREG - f 1 1 C,DC,N,OV,Z SUBR f,WREG SUBR Wb,Ws,Wd Wd = Ws - Wb 1 1 C,DC,N,OV,Z Wd = lit5 - Wb1 1 C,DC,N,OV,Z SUBR Wb, #lit5, Wd 63 SUBBR $f = WREG - f - (\overline{C})$ 1 1 C,DC,N,OV,Z SUBBR f WREG = WREG - f - (\overline{C}) 1 SUBBR f,WREG 1 C,DC,N,OV,Z $Wd = Ws - Wb - (\overline{C})$ 1 1 C,DC,N,OV,Z SUBBR Wb.Ws.Wd $Wd = lit5 - Wb - (\overline{C})$ 1 C,DC,N,OV,Z SUBBR Wb,#lit5,Wd 1 64 1 SWAP SWAP.b Wn Wn = nibble swap Wn 1 None SWAP Wn = byte swap Wn 1 1 None Wn 1 2 65 Read Prog<23:16> to Wd<7:0> TBLRDH TBLRDH Ws,Wd None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard O (unless othe Operating te	perating Conditions erwise stated) mperature -40°C ≤ -40°C ≤	: 3.0V to 3.6V \leq TA \leq +85°C for Ind \leq TA \leq +125°C for Ext	ustrial tended	
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units Conditions				
Operating Cur	rent (IDD) ⁽¹⁾						
DC20d	27	30	mA	-40°C			
DC20a	27	30	mA	+25°C	2 2)/		
DC20b	27	30	mA	+85°C	5.5V		
DC20c	27	35	mA	+125°C			
DC21d	36	40	mA	-40°C		16 MIPS	
DC21a	37	40	mA	+25°C	3 3\/		
DC21b	38	45	mA	+85°C	5.5V		
DC21c	39	45	mA	+125°C			
DC22d	43	50	mA	-40°C		20 MIPS	
DC22a	46	50	mA	+25°C	2 2\/		
DC22b	46	55	mA	+85°C	5.5 V		
DC22c	47	55	mA	+125°C			
DC23d	65	70	mA	-40°C			
DC23a	65	70	mA	+25°C	2 2\/	30 MIPS	
DC23b	65	70	mA	+85°C	5.5 V		
DC23c	65	70	mA	+125°C			
DC24d	84	90	mA	-40°C			
DC24a	84	90	mA	+25°C	2 2\/		
DC24b	84	90	mA	+85°C	5.5 V	40 MIPS	
DC24c	84	90	mA	+125°C			

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- 2: These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 24-20: I/O TIMING REQUIREMENTS								
AC CHAR	ACTERISTI	CS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time		_	10	25	ns	_
DO32	TIOF	Port Output Fall Time			10	25	ns	_
DI35	TINP	INTx Pin High or Low Time (input)		20	—		ns	
DI40	Trbp	CNx High or Low Tim	ne (input)	2	_	_	TCY	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		Standard Operating (unless otherwise s Operating temperate	g Conditions: stated) ure $-40^{\circ}C \le -40^{\circ}C \le 10^{\circ}$	3.0V to 3.6V TA \leq +85°C for TA \leq +125°C for	Industrial or Extended
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 24-29	—	—	0,1	0,1	0,1
10 MHz	—	Table 24-30	—	1	0,1	1
10 MHz	—	Table 24-31	—	0	0,1	1
15 MHz	—	—	Table 24-32	1	0	0
11 MHz	—	—	Table 24-33	1	1	0
15 MHz	_	_	Table 24-34	0	1	0
11 MHz	_	_	Table 24-35	0	0	0

FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
		Cloc	k Parame	ters			
AD50	TAD	ADC Clock Period	76		—	ns	—
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—
		Con	version F	Rate			
AD55	tCONV	Conversion Time	_	12 Tad	_	_	—
AD56	FCNV	Throughput Rate			1.1	Msps —	
AD57	TSAMP	Sample Time	2 Tad		—	—	—
		Timin	ig Param	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad	—	Auto-Convert Trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	—	_
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD	—	_	_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μS	—

TABLE 24-43: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 24-44: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min. Typ Max. Units Conditions				Conditions	
DM1a	DMA Read/Write Cycle Time	_	—	2 TCY	ns	This characteristic applies to PIC24HJ256GPX06A/X08A/X10A devices only.	
DM1b	DMA Read/Write Cycle Time	_	—	1 Tcy	ns	This characteristic applies to all devices with the exception of the PIC24HJ256GPX06A/X08A/X10A.	

NOTES:

APPENDIX A: MIGRATING FROM PIC24HJXXXGPX06/ X08/X10 DEVICES TO PIC24HJXXXGPX06A/ X08A/X10A DEVICES

The PIC24HJXXXGPX06A/X08A/X10A devices were designed to enhance the PIC24HJXXXGPX06/X08/ X10 families of devices.

In general, the PIC24HJXXXGPX06A/X08A/X10A devices are backward-compatible with PIC24HJXXXGPX06/X08/X10 devices; however, manufacturing differences may cause PIC24HJXXXGPX06A/X08A/X10A devices to behave differently from PIC24HJXXXGPX06/X08/X10 devices. Therefore, complete system test and characterization is recommended if PIC24HJXXXGPX06A/X08A/X10A devices are used to replace PIC24HJXXXGPX06/X08/ X10 devices.

The following enhancements were introduced:

- Extended temperature support of up to +125°C
- Enhanced Flash module with higher endurance and retention
- New PLL Lock Enable configuration bit
- Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2

TABLE B-2: MAJOR SECTION UPDAT	-2: MAJOR SECTION OPDATES (CONTINUED)					
Section Name	Update Description					
Section 24.0 "Electrical Characteristics"	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 24-4).					
	Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 24-9).					
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 24-18).					

TABLE B-2: MAJOR SECTION UPDATES (CONTINUED)

	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 24-18).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 24-20).
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 24-39).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 24-40).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 24-41).
	Added DMA Read/Write Timing Requirements (see Table 24-44).
Section 25.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 25-2).
	Added Note 3 and updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 25-15).
	Added Note 3 and updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 25-16).