

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp610a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.2.5 DMA RAM

Every PIC24HJXXXGPX06A/X08A/X10A device contains 2 Kbytes of dual ported DMA RAM located at the end of data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	—	_	-	_	-	—	Receive Register						0000		
I2C1TRN	0202	_	_	_	_	_	_	_	_	Transmit Register							OOFF	
I2C1BRG	0204	_	_	_	_	_	_	_		Baud Rate Generator Register							0000	
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					Address	Register					0000
I2C1MSK	020C	_	_	_	_	_	_		Address Mask Register							0000		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-10: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	_	_	_	_	_		—	_				Receive	Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	_	- Transmit Register							00FF	
I2C2BRG	0214	_	_	_	_	_	_	_		Baud Rate Generator Register						0000		
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	—	—	_	_							Address	Register					0000
I2C2MSK	021C	_	_	_	_	_	_		Address Mask Register C							0000		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-11: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART	Transmit Re	gister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				UART	Receive Re	gister				0000
U1BRG	0228		Baud Rate Generator Prescaler 00									0000						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area. Table 4-35 and Figure 4-6 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>		0				
(Code Execution)			0xxx xxxx >	xxx xx	xxxx xxxx xxx0					
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>						
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx								
	Configuration	TB	LPAG<7:0>		Data EA<15:0>					
		1	xxx xxxx	xxxx xxxx xxxx xxxx						
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾						
(Block Remap/Read)		0	XXXX XXXX	2	XXX XXXX XXXX XXXX					

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

6.0 RESET

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode and Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits, except for the POR bit (RCON<0>), that are set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:									
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15	NSTDIS:	nterrupt Nesting Disable bit	t						
	1 = Interru	pt nesting is disabled							
	0 = Interru	ipt nesting is enabled							
bit 14-7	Unimplem	nented: Read as '0'							
bit 6	DIV0ERR:	Arithmetic Error Status bit							
	1 = Math e	error trap was caused by a c	divide by zero v a divide by zero						
bit 5 DMACERR: DMA Controller Error Status bit									
	1 = DMA controller error trap has occurred								
	0 = DMA c	controller error trap has not	occurred						
bit 4	MATHERF	R: Arithmetic Error Status bi	t						
	1 = Math e	error trap has occurred							
	0 = Math e	error trap has not occurred							
bit 3	ADDRER	R: Address Error Trap Statu	is bit						
	1 = Addres	ss error trap has occurred	a d						
1.11 O		ss error trap has not occurre	ea						
bit 2	SIKERR:	Stack Error Trap Status bit							
	$\perp = Stack$	error trap has occurred							
hit 1		Chor trap has not occurred	tue hit						
DIL		tor failure trap has occurred	d						
	1 = Oscillar0 = Oscillar	ator failure trap has occurre	urred						
bit 0	Unimplem	nented: Read as '0'							
	-								

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 3	CNIF: Input Change Notification Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

r							,
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U1RXIP<2:0>		—		SPI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI1EIP<2:0>				T3IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
							J
bit 15	Unimplem	ented: Read as ')'				
bit 14-12	U1RXIP<2	:0>: UART1 Rece	iver Interrupt	Priority bits			
	111 = Inter	rrupt is priority 7 (I	niahest priori	tv interrupt)			
	•	-FF2 (J	- J			
	•						
	• 001 - Intor	rupt is priority 1					
	001 = Inter	rrupt is priority i	abled				
bit 11	Unimplem	ented: Read as ')'				
bit 10-8	SPI1IP<2:0	0>: SPI1 Event Int	errupt Priorit	v bits			
	111 = Inter	rrupt is priority 7 (I	niahest priori	tv interrupt)			
	•			·) ······			
	•						
	• 001 - Intor	runt is priority 1					
	001 - Inter	rrupt is priority i rrupt source is dis	abled				
bit 7	Unimplem	ented: Read as ')'				
bit 6-4	SPI1EIP<2	2:0>: SPI1 Frror Ir	Iterrupt Priori	tv bits			
	111 = Inter	rrupt is priority 7 (I	niahest priori	ty interrupt)			
	•		J	- J			
	•						
	• 001 - Intor	rupt is priority 1					
	001 = Inter	rrupt is priority i rrupt source is dis	abled				
bit 3	Unimplem	ented: Read as ')'				
bit 2-0	T3IP<2:0>	: Timer3 Interrupt	Priority bits				
5112 0	111 = Inter	rrupt is priority 7 (I	niahest priorit	tv interrupt)			
	•			·) ······			
	•						
	•	ruptic priority 4					
	001 = inter	rrupt is priority 1	abled				

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		C1IP<2:0>				C1RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI2IP<2:0>				SPI2EIP<2:0>	
bit 7							bit 0
Legend:	L:4		L :4				
R = Readable	DIT	vv = vvritable	DIT	U = Unimplei	mented bit, rea	ad as 'U'	
-n = value at i	POR	= Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkn	lown
hit 15	Unimpleme	nted: Read as '(ז'				
bit 14-12		FCAN1 Event In	, Iterrunt Priorit	ty hits			
51(1112	111 = Interru	upt is priority 7 (I	niahest priorit	v interrupt)			
	•			,			
	•						
	• 001 = Interri	upt is priority 1					
	000 = Interru	upt source is dis	abled				
bit 11	Unimpleme	nted: Read as 'o)'				
bit 10-8	C1RXIP<2:0	>: ECAN1 Rece	eive Data Rea	ady Interrupt Pr	iority bits		
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1	abled				
bit 7	Unimpleme	nted: Read as '(טאופט ז'				
bit 6-4	SPI2IP<2:0>	SPI2 Event Int	errupt Priority	v bits			
	111 = Interru	upt is priority 7 (I	niahest priorit	v interrupt)			
	•		5	J			
	•						
	• 001 = Interri	upt is priority 1					
	000 = Interru	upt source is dis	abled				
bit 3	Unimpleme	nted: Read as ')'				
bit 2-0	SPI2EIP<2:0	0>: SPI2 Error Ir	nterrupt Priori	ty bits			
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	abled				

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS Peripheral Indirect Address **DMA Controller** DMA 1 Ready DMA Control DMA I DMA RAM SRAM Peripheral 3 Channels I 1 PORT 1 PORT 2 Т CPU DMA 1 SRAM X-Bus DMA DS Bus CPU Peripheral DS Bus CPU DMA CPU DMA Non-DMA DMA DMA CPU Ready Ready Ready Peripheral Peripheral 2 Peripheral 1 Note: CPU and DMA address buses are not shown for clarity.

8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1 are common to all DMAC channels.

10.0 POWER-SAVING FEATURES

- **Note 1:** This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) of "dsPIC33F/PIC24H Familv the Reference Manual", which is available site the from Microchip web (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJXXXGPX06A/X08A/X10A devices can manage power consumption in four different ways:

- · Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJXXXGPX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24HJXXXGPX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on \overline{SSx} .

Note:	This insures		that	the	first	fra	ame
	transr	nission a	after	initializa	ation	is	not
	shifte						

- 2. In non-framed 3-wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame.

Note:	Not all third-party devices support Frame								
	mode timing. Refer to the SPI electrical								
	characteristics for details.								

- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.
- 5. To avoid invalid slave read data to the master, the user's master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources related to SPI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546061

16.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
		—	—		_	FRMDLY	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15 bit 14	 FRMEN: Framed SPIx Support bit 1 = Framed SPIx support enabled (SSx pin used as frame sync pulse input/output) 0 = Framed SPIx support disabled SPIFSD: Frame Sync Pulse Direction Control bit 1 = Frame sync pulse input (slave) 0 = Frame sync pulse output (master) 								
bit 13	FRMPOL: Frame Sync Pulse Polarity bit 1 = Frame sync pulse is active-high 0 = Frame sync pulse is active-low								
bit 12-2	Unimplemen	ted: Read as '0	3						
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Select	bit					
	1 = Frame sy 0 = Frame sy	nc pulse coincion nc pulse preced	les with first l les first bit clo	bit clock ock					
bit 0	Unimplemen	ted: Read as '0	,						
	This bit must	not be set to '1'	by the user a	application					

REGISTER 1	7-1: I2CxC	ON: I2Cx CC	NTROL REG	SISTER			
R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
DAMA	DAMA	DAMA		DAMALIA	DAVANO		DAMANO
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN hit 0
							DIL U
Legend:		U = Unimpler	mented bit, rea	d as '0'			
R = Readable	bit	W = Writable	bit	HS = Set in h	nardware	HC = Cleared	in hardware
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	12CEN: I2Cx 1 = Enables t 0 = Disables	Enable bit he I2Cx modul the I2Cx modu	le and configur le. All I ² C pins	es the SDAx a are controlled	and SCLx pins a I by port functio	as serial port pir ns.	าร
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	I2CSIDL: Sto	p in Idle Mode	bit				
	1 = Discontin	ue module ope	eration when de	evice enters a	n Idle mode		
		module operat	tion in Idle mod	le	120 110 1		
bit 12	SCLREL: SC	Lx Release Co	ontrol bit (when	operating as	I ² C slave)		
	0 = Hold SCL	x clock low (cl	ock stretch)				
	If STREN = 1	<u>:</u>	,				
	Bit is R/W (i.e at beginning o	e., software ma of slave transm	y write '0' to ini hission. Hardwa	tiate stretch a are clear at en	nd write '1' to re d of slave rece	elease clock). H otion.	lardware clear
	If STREN = 0 Bit is R/S (i.e. transmission.	<u>:</u> ., software may	y only write '1' f	to release cloc	ck). Hardware c	lear at beginnin	g of slave
bit 11	IPMIEN: Intel	ligent Peripher	ral Managemer	nt Interface (IF	MI) Enable bit		
	1 = IPMI mod 0 = IPMI mod	le is enabled; a le disabled	all addresses A	cknowledged			
bit 10	A10M: 10-bit	Slave Address	s bit				
	1 = I2CxADD	is a 10-bit slav	ve address				
hit Q		IS a 7-DIL Slave	e audress				
Dit 9	1 = Slew rate	control disable	ed				
hit 0	0 = Slew rate	control enable	ed A bit				
DILO	DIVIEN: DIVIBUS INPUT Levels DIT 1 = Enable I/O nin thresholds compliant with SMPus specification						
	0 = Disable S	MBus input the	resholds		omeation		
bit 7	GCEN: Gene	ral Call Enable	e bit (when ope	rating as I ² C s	slave)		
	1 = Enable ir (module	nterrupt when a is enabled for call address di	a general call a reception)	ddress is rece	eived in the I2C	ĸRSR	
bit 6		x Clock Stretcl	n Enable hit (wi	hen operating	as I ² C slave)		
Situ	Used in coniu	Inction with SC	LREL bit.	ion operating			
	1 = Enable so 0 = Disable so	oftware or rece	ive clock stretc	hing ching			

11.0	11.0	11.0	D٥	D 0	D 0	D 0	D٥
	0-0		۲۰-۷	N-V	FII HIT<4·0>	rx-U	r-v
bit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_				ICODE<6:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-13	Unimplement	ted: Read as '	0'				
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits				
	10000 - 1111	1 = Reserved r 15					
	•						
	•						
	•						
	00001 = Filter	r 1					
	00000 = Filter	r0	- 1				
bit 7	Unimplement	ted: Read as '					
bit 6-0	ICODE<6:0>:	Interrupt Flag	Code bits				
	1000101-11 1000100 = FI	IFO almost full	interrupt				
	1000011 = R	eceiver overflo	w interrupt				
	1000010 = W	/ake-up interru	pt				
	1000001 = EI 1000000 = N	nterrupt					
	1000000 10	omonupt					
	0010000-01	11111 = Rese	rved				
	0001111 = R	B15 buffer Inte	rrupt				
	•						
	•						
	0001001 = R	B9 buffer interi	rupt				
	0001000 = R	B8 buffer interi	rupt				
	0000111 = T	RB7 buffer inte	errupt				
	0000110 = T	RB5 buffer inte	errupt				
	0000100 = TI	RB4 buffer inte	rrupt				
	0000011 = T	RB3 buffer inte	rrupt				
	0000010 = H	RB2 buffer inte	errupt				
	0000000 = TI	RB0 Buffer inte	errupt				

REGISTER 19-3: CiVEC: ECAN™ MODULE INTERRUPT CODE REGISTER

REGISTER 19-12: CiBUFPNT1: ECAN™ MODULE FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP	<3:0>		F2BP<3:0>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10000	F1BP	<3:0>	10000		F0B	P<3:0>	1000 0
bit 7	1101	0.0					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter • • • • •	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 3 Hits bits ıffer 4			
bit 11-8	F2BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir hits received ir	n XX Buffer 0 n RX FIFO bu n RX Buffer 1 n RX Buffer 1 n RX Buffer 1	er 2 Hits bits ıffer 4			
bit 7-4	F1BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bu n RX Buffer 1 n RX Buffer 1 n RX Buffer 0	er 1 Hits bits ıffer 4			
bit 3-0	F0BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writ hits received ir hits received ir hits received ir	n RX Buffer 1 n RX Buffer 1 n RX Buffer 1	er 0 Hits bits ıffer 4			

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units Conditions						
Operating Current (IDD) ⁽¹⁾									
DC20d	27	30	mA	-40°C					
DC20a	27	30	mA	+25°C	2 2)/				
DC20b	27	30	mA	+85°C	5.5V				
DC20c	27	35	mA	+125°C					
DC21d	36	40	mA	-40°C		16 MIPS			
DC21a	37	40	mA	+25°C	3 3\/				
DC21b	38	45	mA	+85°C	5.5V				
DC21c	39	45	mA	+125°C					
DC22d	43	50	mA	-40°C		20 MIPS			
DC22a	46	50	mA	+25°C	2 2\/				
DC22b	46	55	mA	+85°C	5.5 V				
DC22c	47	55	mA	+125°C					
DC23d	65	70	mA	-40°C					
DC23a	65	70	mA	+25°C	2 2\/	30 MIDS			
DC23b	65	70	mA	+85°C	5.5 V	30 MIF 3			
DC23c	65	70	mA	+125°C					
DC24d	84	90	mA	-40°C					
DC24a	84	90	mA	+25°C	2.3\/				
DC24b	84	90	mA	+85°C	5.5 V	40 WIF 3			
DC24c	84	90	mA	+125°C					

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- 2: These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 24-19: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V					
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
-		1		1		-40°C ≤ `	TA \leq +125°C for Extended	
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Conditions		
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	its	bits		
AD21b	INL	Integral Nonlinearity	-1.5	-	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity	—		_	_	Guaranteed	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	its	bits		
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity	—			—	Guaranteed	
		Dynamic I	Performa	ance (10	-bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	—		-64	dB	_	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	—	
AD32b	SFDR	Spurious Free Dynamic Range	72		_	dB	_	
AD33b	Fnyq	Input Signal Bandwidth			550	kHz	_	
AD34b	ENOB	Effective Number of Bits	9.16	9.4	—	bits	—	

TABLE 24-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽¹⁾

Note 1: Injection currents > |0| can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

NOTES: