

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Betano	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp610a-h-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000			•			•		Working Re	gister 0	•				•		•	xxxx
WREG1	0002								Working Re	gister 1								xxxx
WREG2	0004								Working Re	gister 2								xxxx
WREG3	0006								Working Re	gister 3								xxxx
WREG4	8000								Working Re	gister 4								xxxx
WREG5	000A								Working Re	gister 5								XXXX
WREG6	000C								Working Re	gister 6								xxxx
WREG7	000E								Working Re	gister 7								XXXX
WREG8	0010								Working Re	gister 8								xxxx
WREG9	0012								Working Re	gister 9								xxxx
WREG10	0014								Working Reg	gister 10								xxxx
WREG11	0016								Working Reg	gister 11								xxxx
WREG12	0018								Working Ree	gister 12								xxxx
WREG13	001A								Working Ree	gister 13								xxxx
WREG14	001C								Working Ree	gister 14								xxxx
WREG15	001E								Working Ree	gister 15								0800
SPLIM	0020							Sta	ck Pointer Li	mit Register	•							xxxx
PCL	002E							Program	n Counter Lo	w Word Reg	gister							0000
PCH	0030	—	_	—	—	—	—	—	—			Progra	m Counter	High Byte F	Register			0000
TBLPAG	0032	—	_	—	—	—	—	—	—				· ·	ss Pointer F	.			0000
PSVPAG	0034		—	—	—	—	—		—		•	am Memory	Visibility P	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	eat Loop Cou	inter Regist			1	1	I.			xxxx
SR	0042	—	_		_	_	—	—	DC		IPL<2:0>		RA	N	OV	Z	С	0000
CORCON	0044	—	_	—	—	—	—	—	—	—	—	—	—	IPL3	PSV	—	—	0000
DISICNT	0052	_	_						Disable	e Interrupts	Counter R	egister					1	xxxx
BSRAM	0750		—	—	—	—	—	—	—	—	—	_	—		IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752		—	—	—	—	—	—	-	—	-	—	—	—	IW_SSR	IR_SSR	RL_SSR	0000

PIC24HJXXXGPX06A/X08A/X10A

TABLE 4-1: CPU CORE REGISTERS MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							:	See definit	on when W	/IN = x							
C2BUFPNT1	0520		F3BF	><3:0>			F2BF	D<3:0>			F1BF	<3:0>			F0BF	^<3:0>		0000
C2BUFPNT2	0522		F7BF	P<3:0>			F6BF	P<3:0>			F5BF	<3:0>			F4BF	^<3:0>		0000
C2BUFPNT3	0524		F12B	P<3:0>			F10B	P<3:0>			F9BF	<3:0>			F8BF	°<3:0>		0000
C2BUFPNT4	0526		F15B	P<3:0>			F14B	P<3:0>			F13BI	P<3:0>			F12B	P<3:0>		0000
C2RXM0SID	0530				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C2RXM0EID	0532				EID<	15:8>							EID<7	/:0>				xxxx
C2RXM1SID	0534				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C2RXM1EID	0536				EID<	15:8>							EID<7	/:0>				xxxx
C2RXM2SID	0538				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C2RXM2EID	053A				EID<	15:8>							EID<7	/:0>				xxxx
C2RXF0SID	0540				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF0EID	0542				EID<	15:8>							EID<7	/:0>	_	_		xxxx
C2RXF1SID	0544				SID<	10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C2RXF1EID	0546				EID<	15:8>							EID<7	/:0>	•	•		xxxx
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF2EID	054A				EID<	15:8>							EID<7	/:0>	•	•		xxxx
C2RXF3SID	054C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF3EID	054E				EID<	15:8>				EID<				7:0>				xxxx
C2RXF4SID	0550				SID<	10:3>				SID<2:0> —				EXIDE — EID<17:16>				xxxx
C2RXF4EID	0552				EID<	15:8>							/:0>				xxxx	
C2RXF5SID	0554				SID<	10:3>				SID<2:0> — EXIDE —					_	EID<	17:16>	xxxx
C2RXF5EID	0556				EID<	15:8>							EID<7	/:0>				xxxx
C2RXF6SID	0558				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF6EID	055A				EID<	15:8>							EID<7	/:0>				xxxx
C2RXF7SID	055C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF7EID	055E				EID<	15:8>							EID<7	/:0>				xxxx
C2RXF8SID	0560				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF8EID	0562				EID<	15:8>							EID<7	/:0>				xxxx
C2RXF9SID	0564				SID<	10:3>					SID<2:0>			EXIDE		EID<	17:16>	xxxx
C2RXF9EID	(F9EID 0566 EID<15:8>								EID<7	/:0>				xxxx				
C2RXF10SID	2XF10SID 0568 SID<10:3>					SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx						
C2RXF10EID	056A				EID<	15:8>							EID<7	/:0>		-		xxxx
C2RXF11SID	056C	1			SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610A DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-31: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	—	_	_	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxxx(1)
OSCCON	0742	_	(COSC<2:0>	>	_	١	NOSC<2:0	>	CLKLOCK	_	LOCK		CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	[DOZE<2:0>	>	DOZEN	FI	RCDIV<2:0)>	PLLPOS	T<1:0>	—		F	PLLPRE<4:	:0>		3040
PLLFBD	0746		—		—	—	_					F	PLLDIV<8:0	>				0030
OSCTUN	0748		—		_	—	_	_	_	_	—			TUN	l<5:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-32: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_	_	—	_	_	ERASE				NVMO	P<3:0>		₀₀₀₀ (1)
NVMKEY	0766	—		—				—					NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-33: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	_	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	-	_	_	—	—	-	—		_	_	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 3	CNIF: Input Change Notification Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

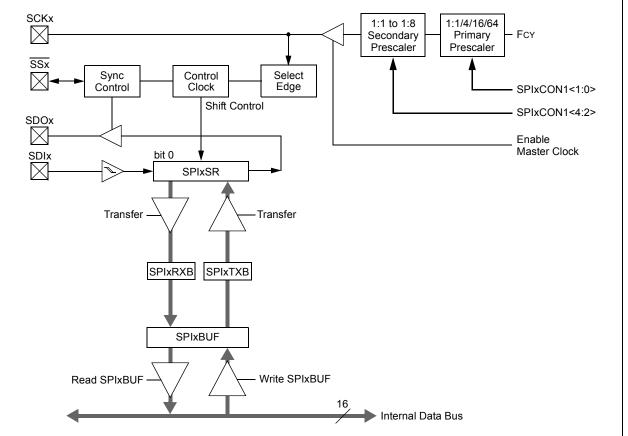
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U1RXIP<2:0>		—		SPI1IP<2:0>	
bit 15							bit
11.0		R/W-0		11.0		R/W-0	
U-0	R/W-1	SPI1EIP<2:0>	R/W-0	U-0	R/W-1	T3IP<2:0>	R/W-0
bit 7		0111211 \2.02				1011 \2.02	bit
510 1							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	:0>: UART1 Rece		Prioritv bits			
		rupt is priority 7 (-	-			
	•						
	•						
	001 = Inter	rupt is priority 1					
		rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8		>: SPI1 Event In	=	-			
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 7		ented: Read as '					
bit 6-4	-	:0>: SPI1 Error II		ty bits			
		rupt is priority 7 (-	-			
	•						
	•						
		rupt is priority 1					
h :+ 0		rupt source is dis					
bit 3 bit 2-0	-	ented: Read as '					
DIL 2-0		: Timer3 Interrupt rupt is priority 7 (-	v interrunt)			
	•		riighest phon	ly interrupt)			
	•						
	• 001 = Inter	muchic criteriter d					

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 18. "Serial Peripheral Interface (SPI)" (DS70206), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

PIC24HJXXXGPX06A/X08A/X10A

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC
ACKSTAT	TRSTAT		—		BCL	GCSTAT	ADD10
bit 15						1	bit 8
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit C
Legend:		U = Unimpler	nented bit rea	ad as '0'		C = Clear on	lv hit
R = Readable	hit	W = Writable		HS = Set in h	ardware	HSC = Hardwa	-
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	
	OK	1 - Dit 13 3et					IOWIT
bit 15	(when operati 1 = NACK rec 0 = ACK rece	cknowledge Sta ing as I ² C mas ceived from sla ived from slave or clear at end	ter, applicable ve e		nsmit operation)	
bit 14	1 = Master tra 0 = Master tra	ansmit is in pro ansmit is not in	gress (8 bits - progress	+ ACK)		to master trans	
bit 13-11	Unimplemen	ted: Read as '	0'				
bit 10	BCL: Master	Bus Collision [Detect bit				
	0 = No collisio	lision has beer on at detection of		-	peration		
bit 9	GCSTAT: Ger	neral Call Statu	ıs bit				
	0 = General c	all address wa all address wa when address	s not received		ess. Hardware o	lear at Stop det	ection.
bit 8	ADD10: 10-B	it Address Stat	us bit				
	0 = 10-bit add	lress was mate lress was not r at match of 2r	natched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.
bit 7	IWCOL: Write	e Collision Dete	ect bit				
	0 = No collisio	on	-		ause the I ² C mo ousy (cleared by	-	
bit 6	I2COV: Recei	ive Overflow F	lag bit				
	0 = No overflo	ow		-	still holding the	-	
bit 5		dress bit (whe				Solutio).	
~	1 = Indicates 0 = Indicates	that the last by that the last by	rte received w rte received w	as data as device add	ress by reception of	slave byte.	
bit 4	P: Stop bit 1 = Indicates 0 = Stop bit w	that a Stop bit /as not detecte or clear when	has been dete d last	ected last		-	

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	Hardware set or clear when Start, Repeated Start or Stop detected. R_W: Read/Write Information bit (when operating as I ² C slave) 1 = Read – indicates data transfer is output from slave
	0 = Write - indicates data transfer is input to slaveHardware set or clear after reception of I2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546061

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	-	—	_		
bit 15							bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7 bit 6 bit 5	1 = Interrupt n 0 = Interrupt n WAKIE: Bus 1 = Interrupt n 0 = Interrupt n	I Message Inter request enabled request not ena Wake-up Activit request enabled request not ena Interrupt Enabl	d bled ty Interrupt E d bled				
	0 = Interrupt i	request enabled request not ena	bled				
bit 4 bit 3	FIFOIE: FIFC	ted: Read as 'd Almost Full Inf request enabled	errupt Enabl	e bit			
	0 = Interrupt i	request not ena	bled				
bit 2	1 = Interrupt i	Buffer Overflov request enabled request not ena	, t	nable bit			
bit 1	1 = Interrupt i	ffer Interrupt Er request enableo request not ena	t				
bit 0	1 = Interrupt i	fer Interrupt En request enableo request not ena	ł				

REGISTER 19-7: CIINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER

REGISTER 19-12: CiBUFPNT1: ECAN™ MODULE FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3BP<3:0>				F2B	><3:0>		
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F1BP	<3:0>			F0BF	><3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unki	nown
bit 15-12	1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 11-8	F2BP<3:0>: RX Buffer Written when Filter 2 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14						
	•						
	•						
		hits received ir hits received ir					
bit 7-4	1111 = Filter	RX Buffer Writt hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 3-0	1111 = Filter	RX Buffer Writ hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
	• 0001 = Filter 0000 = Filter	hits received ir					

PIC24HJXXXGPX06A/X08A/X10A

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—	_	—		DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

21.4 Watchdog Timer (WDT)

For PIC24HJXXXGPX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

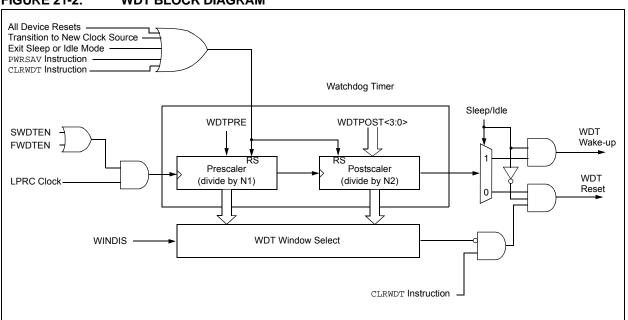
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TwDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 21-2: WDT BLOCK DIAGRAM

DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
Operating Voltage							
DC10	Supply Voltage						
	Vdd		3.0		3.6	V	Industrial and Extended
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_		V	_
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 24-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	-	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

AC CH	ARACTE	RISTICS	(unless		e stated) ature -4	0°C≤ TA	DV to 3.6V \leq +85°C for Industrial \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
Clock Parameters							
AD50	TAD	ADC Clock Period	76			ns	—
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—
	Conversion Rate						
AD55	tCONV	Conversion Time	—	12 Tad	—	_	—
AD56	FCNV	Throughput Rate	—	_	1.1	Msps	—
AD57	TSAMP	Sample Time	2 Tad	_	_	_	—
		Timin	ng Param	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad		Auto-Convert Trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	_	_
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	—	—	_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	_	20	μS	_

TABLE 24-43: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 24-44: DMA READ/WRITE TIMING REQUIREMENTS

АС СНА	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions	
DM1a	DMA Read/Write Cycle Time	_		2 Tcy	ns	This characteristic applies to PIC24HJ256GPX06A/X08A/X10A devices only.	
DM1b	DMA Read/Write Cycle Time	_	_	1 Tcy	ns	This characteristic applies to all devices with the exception of the PIC24HJ256GPX06A/X08A/X10A.	

CHARAG	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	Clock Parameters						
HAD50	TAD	ADC Clock Period ⁽¹⁾	147			ns	—
Conversion Rate							
		0011					

TABLE 25-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						ed)	
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		Cloc	k Parame	ters			
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_		ns	_
	Conversion Rate						
HAD56	FCNV	Throughput Rate ⁽¹⁾		_	800	Ksps	—

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE B-2: MAJOR SECTION UPDATES (CONTINUED)						
Section Name	Update Description					
Section 24.0 "Electrical Characteristics"	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 24-4). Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 24-9). Removed Note 2 from the AC Characteristics: Internal RC Accuracy					
	(see Table 24-18).					

TABLE B-2: MAJOR SECTION UPDATES (CONTINUED)

	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 24-18).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 24-20).
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 24-39).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 24-40).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 24-41).
	Added DMA Read/Write Timing Requirements (see Table 24-44).
Section 25.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 25-2).
	Added Note 3 and updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 25-15).
	Added Note 3 and updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 25-16).

Revision D (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers"	Updated the Recommended Minimum Connection (see Figure 2-1).
Section 9.0 "Oscillator Configuration"	Updated the COSC<2:0> and NOSC<2:0> bit value definitions for '001' (see Register 9-1).
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the Analog-to-Digital Conversion Clock Period Block Diagram (see Figure 20-2).
Section 21.0 "Special Features"	Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 21-1).
Section 24.0 "Electrical Characteristics"	Updated "Absolute Maximum Ratings".
	Updated Operating MIPS vs. Voltage (see Table 24-1).
	Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 24-4).
	Updated the notes in the following tables:
	• Table 24-5
	Table 24-6
	• Table 24-7
	Table 24-8
	Updated the I/O Pin Output Specifications (see Table 24-10).
	Updated the Conditions for parameter BO10 (see Table 24-11).
	Updated the Conditions for parameters D136b, D137b, and D138b (TA = 150°C) (see Table 24-12).
Section 25.0 "High Temperature Electrical	Updated "Absolute Maximum Ratings".
Characteristics"	Updated the I/O Pin Output Specifications (see Table 25-6).
	Removed Table 25-7: DC Characteristics: Program Memory.

INDEX

Α	
AC Characteristics	252, 291
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC1 Register Map	42
ADC2 Register Map	42
Alternate Interrupt Vector Table (AIVT)	69
Analog-to-Digital Converter	
DMA	
Initialization	
Key Features	
Arithmetic Logic Unit (ALU)	28
Assembler	
MPASM Assembler	
Automatic Clock Stretch	

В

145
208
226
180
153
155
16
24
123
125
65
141
159
149
148
173
227

С

C Compilers	
MPLAB C18	
Clock Switching	131
Enabling	131
Sequence	131
Code Examples	
Erasing a Program Memory Page	62
Initiating a Programming Sequence	
Loading Write Buffers	63
Port Write/Read	142
PWRSAV Instruction Syntax	
Code Protection	. 221, 228
Configuration Bits	
Description (Table)	
Configuration Register Map	
Configuring Analog Port Pins	142
CPU	
Control Register	
CPU Clocking System	124
PLL Configuration	124
Selection	124
Sources	124
Customer Change Notification Service	321

Customer Notification Service Customer Support	
D	
Data Address Space	31
Alignment	31
Memory Map for PIC24HJXXXGPX06A/X08A/X1	0A
Devices with 16 KB RAM	33
Memory Map for PIC24HJXXXGPX06A/X08A/X1	0A
Devices with 8 KB RAM	32
Near Data Space	31
Software Stack	53
Width	31
DC and AC Characteristics	
Graphs and Tables	297
DC Characteristics	242
Doze Current (IDOZE)	
High Temperature	288
I/O Pin Input Specifications	248
I/O Pin Output Specifications	50, 290
Idle Current (IDOZE)	247
Idle Current (IIDLE)	245
Operating Current (IDD)	
Operating MIPS vs. Voltage	288
Power-Down Current (IPD)	
Power-down Current (IPD)	288
Program Memory	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	
Development Support	237
DMA Module	
DMA Register Map	
DMAC Registers	
DMAxCNT	
DMAxCON	
DMAxPAD	
DMAxREQ	
DMAxSTA	
DMAxSTB	114

Е

ECAN Module
CiFMSKSEL2 register 199
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1) 44
ECAN1 Register Map (C1CTRL1.WIN = 0) 45
ECAN1 Register Map (C1CTRL1.WIN = 1) 45
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1) 47
ECAN2 Register Map (C2CTRL1.WIN = 0) 47
ECAN2 Register Map (C2CTRL1.WIN = 1) 48
Frame Types 179
Modes of Operation 181
Overview 179
ECAN Registers
Filter 15-8 Mask Selection Register
(CiFMSKSEL2) 199
Electrical Characteristics 241
AC 252, 291
Enhanced CAN Module 179
Equations
Device Operating Frequency 124
FOSC Calculation 124
XT with PLL Mode Example 125
Errata 13