

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp610a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area. Table 4-35 and Figure 4-6 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0 PC<22:1>				0	
(Code Execution)			0xxx xxxx x	xxx xx	xx xxxx xxx0		
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>			
(Byte/Word Read/Write)		0	xxx xxxx	XXXX XX	xx xxxx xxxx		
	Configuration	TBLPAG<7:0>		Data EA<15:0>			
		1xxx xxxx xxxx xxxx xxxx xxxx					
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾		0>(1)	
(Block Remap/Read)		0	XXXX XXXX		xxx xxxx xxxx xxxx		

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

ABLE 7-1	1 1	T VECTORS	1	
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1: INTERRUPT VECTORS

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	_	_	_	_	_	_		
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
 bit 7	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP bit		
							DI		
Legend:									
R = Readable	e bit	W = Writable	ble bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15 bit 14	ALTIVT: Enable Alternate Interrupt Vector Table bit 1 = Use alternate vector table 0 = Use standard (default) vector table DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active								
bit 13-5	Unimplement	ted: Read as '	0'						
bit 4	INT4EP: External Interrupt 4 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge								
bit 3	1 = Interrupt o	rnal Interrupt 3 on negative ed on positive edg	ge	Polarity Select	t bit				
bit 2	 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge 								
bit 1	1 = Interrupt o	rnal Interrupt ´ on negative ed on positive edg	ge	Polarity Select	t bit				
bit 0	1 = Interrupt c	rnal Interrupt (on negative ed on positive edg	ge	Polarity Select	t bit				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_			_	_		
bit 15	-						bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	_
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7 bit 6 bit 5	 C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 						
	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r	request has not	: occurred ata Transfer C curred	Complete Interr	upt Flag Statu	s bit	
bit 4	0 = Interrupt r DMA6IF: DM 1 = Interrupt r 0 = Interrupt r	equest has not A Channel 6 Da equest has occ	coccurred ata Transfer C curred coccurred	Complete Interr	upt Flag Statu	s bit	
	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r 0 = Interrupt r Unimplemen U2EIF: UART 1 = Interrupt r	request has not A Channel 6 Da request has occ request has not	coccurred ata Transfer C curred coccurred o' ot Flag Status curred		upt Flag Statu	s bit	
bit 4 bit 3	0 = Interrupt r DMA6IF: DM. 1 = Interrupt r 0 = Interrupt r Unimplemen U2EIF: UART 1 = Interrupt r 0 = Interrupt r U1EIF: UART 1 = Interrupt r	equest has not A Channel 6 Da equest has occ equest has not ted: Read as '0 '2 Error Interrup equest has occ	coccurred ata Transfer C curred coccurred of Flag Status curred coccurred of Flag Status curred	bit	upt Flag Statu	s bit	

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are			
	initialized, such that all user interrupt			
	sources are assigned to priority level 4.			

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

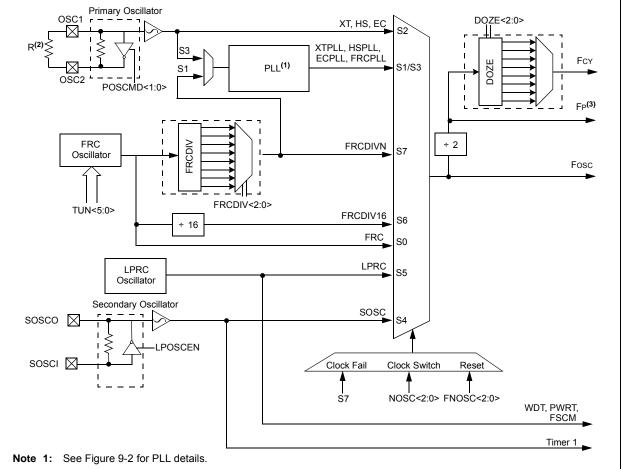
- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value 0x0E with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

9.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) of the "dsPIC33F/dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

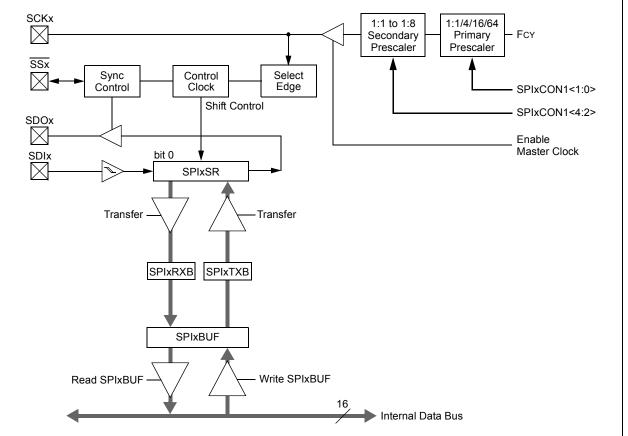
A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24HJXXXGPX06A/X08A/X10A OSCILLATOR SYSTEM DIAGRAM

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 MΩ must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU. Throughout this document FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used in any ratio other than 1:1, which is the default.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 18. "Serial Peripheral Interface (SPI)" (DS70206), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	Hardware set or clear when Start, Repeated Start or Stop detected. R_W: Read/Write Information bit (when operating as I ² C slave) 1 = Read – indicates data transfer is output from slave
	0 = Write - indicates data transfer is input to slaveHardware set or clear after reception of I2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
				:10:3>						
bit 15							bit			
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x			
	SID<2:0>		_	EXIDE	_	EID<1	7:16>			
bit 7							bit (
Legend:										
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'		l as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-5	SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be '1 0 = Message address bit SIDx must be '0									
bit 4	Unimplemer	ted: Read as '	0'							
bit 3		nded Identifier	Enable bit							
		If MIDE = 1:								
	 1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses 									
	O – Match on O	iy messayes w	illi Slanuaru il		000					
	0 = Match on If MIDE = 0: Ignore EXID	E bit.								
bit 2	<u>If MIDE = 0:</u> Ignore EXID	E bit. Ited: Read as '	0'							
	<u>If MIDE = 0:</u> Ignore EXID Unimpleme r									
bit 2 bit 1-0	If MIDE = 0: Ignore EXID Unimplemer EID<17:16>:	ted: Read as '	ntifier bits	' to match filter						

REGISTER 19-17: CiRXFnEID: ECANTM MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
DA4	D 44/	D///		D/4/	D 0 0 /		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Lanand							
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-19: CIFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0
F15M	F15MSK<1:0>		K<1:0>	F13M	SK<1:0>	F12MS	K<1:0>	
bit 15								bit 8
R/W-0	R/W-0		R/W-0		R/W-0		R/W	10
		R/W-0	-	R/W-0		R/W-0		/-0
	SK<1:0>	F10MS	K<1:0>	F9MS	SK<1:0>	F8MS	K<1:0>	1.1.4
bit 7								bit (
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown	
bit 15-14	F15MSK<1:0	>: Mask Sourc	e for Filter 15	bit				
		ed; do not use						
		ance Mask 2 reg						
		ance Mask 1 reg ance Mask 0 reg						
bit 13-12	-)>: Mask Sourc	-					
DIL 13-12		ed; do not use		DIL				
		ance Mask 2 reg	gisters contair	n mask				
		ance Mask 1 reg						
	00 = Accepta	ance Mask 0 reg	gisters contair	n mask				
bit 11-10		>: Mask Sourc	e for Filter 13	bit				
		ed; do not use	niatana aantain					
		ance Mask 2 reg ance Mask 1 reg						
		ance Mask 0 reg						
bit 9-8	-)>: Mask Sourc	-					
	11 = Reserve	ed; do not use						
		ance Mask 2 reg						
		ance Mask 1 reg						
h:+ 7 C		ance Mask 0 reg)>: Mask Sourc	-					
bit 7-6		ed; do not use	e for Filter II	DIL				
		ance Mask 2 reg	pisters contair	n mask				
		ance Mask 1 reg						
	00 = Accepta	ance Mask 0 reg	gisters contair	n mask				
bit 5-4		D>: Mask Sourc	e for Filter 10	bit				
		ed; do not use						
	-	ance Mask 2 reg	-					
	-	ance Mask 1 reg ance Mask 0 reg	-					
bit 3-2	-	: Mask Source	-					
		ed; do not use						
		ance Mask 2 reg	gisters contair	n mask				
	-	ance Mask 1 reg	-					
	-	ance Mask 0 reg	-					
bit 1-0		: Mask Source	for Filter 8 bi	t				
		ed; do not use						
		ance Mask 2 reg						
		ance Mask 1 reg ance Mask 0 reg						
			Julie Contain					

20.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

20.5 ADC Resources

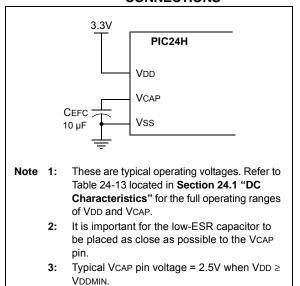
Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546061

20.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

21.2 On-Chip Voltage Regulator


All of the PIC24HJXXXGPX06A/X08A/X10A devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24HJXXXGPX06A/X08A/X10A family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP pin (Figure 21-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 24-13 of **Section 24.1** "**DC Characteristics**".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 21-1: ON-CHIP VOLTAGE REGULATOR CONNECTIONS^(1,2,3)

21.3 Brown-out Reset (BOR)

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

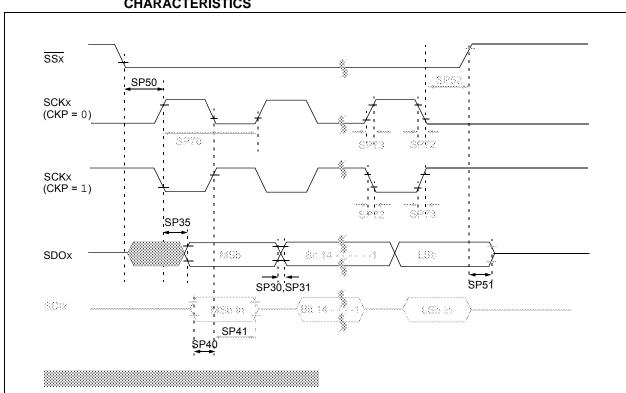
Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

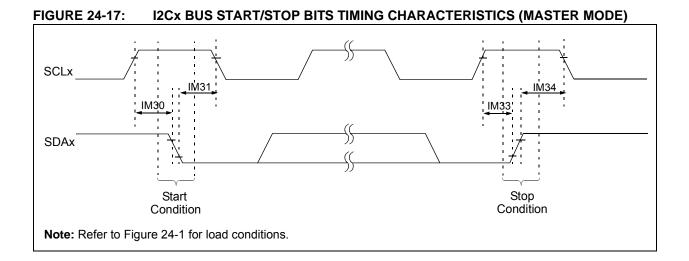
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

TABLE 24-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS


АС СНА		rics	Standard Op (unless othe Operating ter	rwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_		11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge		—	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

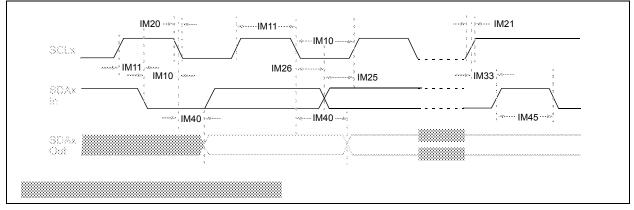

4: Assumes 50 pF load on all SPIx pins.

FIGURE 24-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CHA	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	—		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—		
			400 kHz mode	Tcy/2 (BRG + 1)		μS	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—		
		Setup Time	400 kHz mode	100	—	ns			
			1 MHz mode ⁽²⁾	40	—	ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	μS	—		
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	0.2	—	μS			
IM30 Tsu:sta Start Condition Setup Time 100 kHz mode To 400 kHz mode		Tcy/2 (BRG + 1)	—	μS	Only relevant for				
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period the		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	—		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns			
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—		
		From Clock	400 kHz mode	—	1000	ns	—		
			1 MHz mode ⁽²⁾	—	400	ns	—		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be		
			400 kHz mode	1.3	—	μS	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μS	transmission can start		
IM50	Св	Bus Capacitive L	oading	_	400	pF	—		
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	See Note 3		

TABLE 24-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

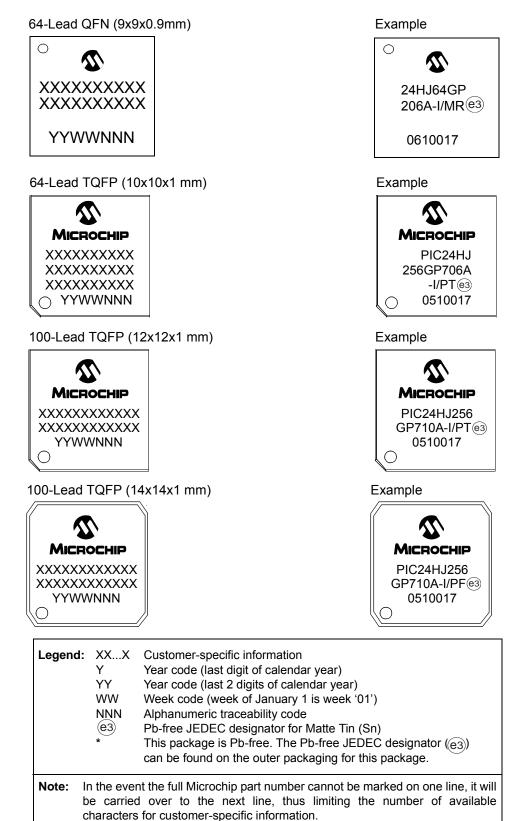

AC CHARACTERISTICS			Standard O (unless oth Operating te	erwise	ture -40°C	≤ Ta≤	to 3.6V +85°C for Industrial 125°C for Extended
Param No.	Symbo I	Characteristic	Min.	Тур	Max.	Units	Conditions
			Device	Supply	/		
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V	—
			Referen	ce Inpu	ts		
AD05	Vrefh	Reference Voltage High	AVss + 2.5		AVdd	V	
AD05a			3.0		3.6	V	Vrefh = AVdd Vrefl = AVss = 0
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 2.5	V	
AD06a			0		0	V	VREFH = AVDD VREFL = AVSS = 0
AD07	VREF	Absolute Reference Voltage	2.5		3.6	V	VREF = VREFH - VREFL
AD08	IREF	Current Drain	_		10	μA	ADC off
AD08a	IAD	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 1 12-bit ADC mode, See Note 1
			Analo	g Input			
AD12	VINH	Input Voltage Range VINH	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input
AD13	VINL	Input Voltage Range VINL	VREFL	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input
AD17	Rin	Recommended Imped- ance of Analog Voltage Source	_		200 200	Ω Ω	10-bit ADC 12-bit ADC

TABLE 24-39: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

F

•
Flash Program Memory59
Control Registers60
Operations60
Programming Algorithm62
RTSP Operation60
Table Instructions59
Flexible Configuration
FSCM
Delay for Crystal and PLL Clock Sources
Device Resets
н
High Temperature Electrical Characteristics
I/O Ports
Parallel I/O (PIO)141
Write/Read Timing
l ² C
Operating Modes
Registers
I ² C Module
I2C1 Register Map
I2C2 Register Map
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Registers
Input Change Notification Module
Instruction Addressing Modes
File Register Instructions
Fundamental Modes Supported
MCU Instructions
Move and Accumulator Instructions
Other Instructions
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Internal RC Oscillator
Use with WDT
Internet Address
Interrupt Control and Status Registers
IECx
IFSx
INTCON1
INTCON2
INTTREG
IPCx
Interrupt Setup Procedures
Initialization
Interrupt Disable
Interrupt Disable
Trap Service Routine
Interrupt Vector Table (IVT)
Interrupts Coincident with Power Save Instructions
interrupto confedent with rower dave instructions
J
JTAG Boundary Scan Interface
· · · · · · · · · · · · · · · · · · ·

Μ

Memory Organization
Modes of Operation
Disable
Initialization
Listen All Messages 181
Listen Only 181
Loopback 181
Normal Operation 181
MPLAB ASM30 Assembler, Linker, Librarian 238
MPLAB Integrated Development
Environment Software 237
MPLAB PM3 Device Programmer 240
MPLAB REAL ICE In-Circuit Emulator System 239
MPLINK Object Linker/MPLIB Object Librarian 238
Multi-Bit Data Shifter 28
Ν
NVM Module
Register Map52
0
Open-Drain Configuration
Output Compare 155
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD)
Pinout I/O Descriptions (table)
PMD Module
Register Map
POR and Long Oscillator Start-up Times
PORTA
Register Map
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 70 Register Map 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 PORTD 50 PORTD 50 PORTE 50 PORTE 51 PORTF 51
Register Map50PORTB50Register Map50PORTC50PORTD8Register Map50PORTE50PORTE51PORTF71Register Map51
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 70 Register Map 51 PORTF 71 Register Map 51 PORTG 51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Register Map51
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD70Register Map50PORTE50Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55
Register Map50PORTB50Register Map50PORTC50Register Map50PORTD50Register Map50PORTE51Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using78
Register Map50PORTB60Register Map50PORTC70Register Map50PORTD70Register Map50PORTE70Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56
Register Map 50 PORTB 50 Register Map 50 PORTC 50 Register Map 50 PORTD 50 Register Map 50 PORTD 50 PORTD 50 PORTE 50 PORTE 50 PORTE 50 PORTE 51 PORTG 51 PORTG 51 Power-Saving Features 133 Clock Frequency and Switching 133 Program Address Space 29 Construction 55 Data Access from Program Memory Using 58 Program Space Visibility 58 Data Access from Program Memory Using Table Instructions Using Table Instructions 57 Data Access from, Address Generation 56 Memory Map 29
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF51Register Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using Program Space Visibility58Data Access from Program Memory Using Table Instructions57Data Access from, Address Generation56Memory Map29Table Read Instructions29
Register Map50PORTBRegister MapRegister Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57
Register Map50PORTB8Register Map50PORTC8Register Map50PORTD8Register Map50PORTE50Register Map51PORTF8Register Map51PORTG51PORTG133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDH57TBLRDL57
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTFRegister MapRegister Map51PORTG51PORTG51Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using58Data Access from Program Memory57Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58
Register Map50PORTB50Register Map50PORTC70Register Map50PORTD70Register Map50PORTE71Register Map51PORTF71Register Map51PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using71Program Space Visibility58Data Access from, Address Generation56Memory Map29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory58
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using57Data Access from Program Memory29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory133Interrupt Vector30
Register Map50PORTB50Register Map50PORTCRegister MapRegister Map50PORTDRegister MapRegister Map51PORTF71Register Map51PORTG71PORTG71Power-Saving Features133Clock Frequency and Switching133Program Address Space29Construction55Data Access from Program Memory Using57Data Access from Program Memory29Table Read Instructions57TBLRDH57TBLRDL57Visibility Operation58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory57TBLRDL57Visibility Operation58Program Memory58Program Memory57Table Read Instructions57TBLRDL57Visibility Operation58Program Memory58