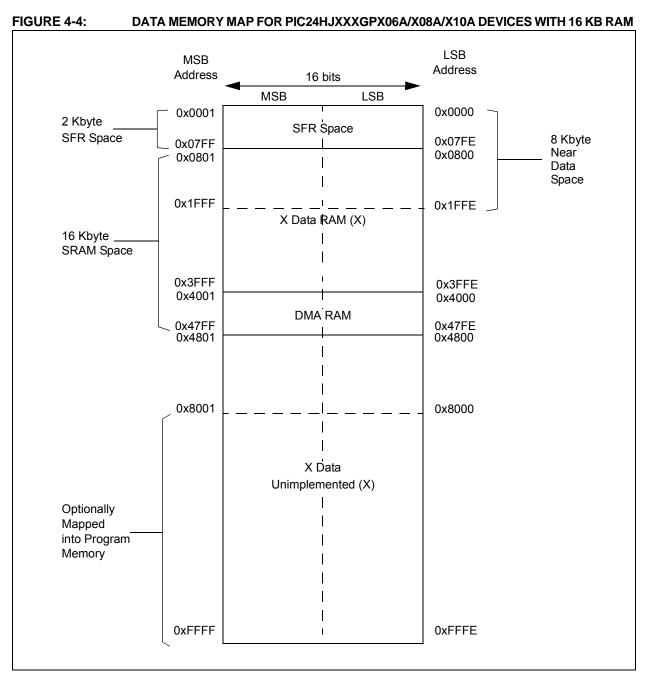


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp206a-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.5 DMA RAM

Every PIC24HJXXXGPX06A/X08A/X10A device contains 2 Kbytes of dual ported DMA RAM located at the end of data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000			•			•		Working Re	gister 0	•		•		•		•	xxxx
WREG1	0002								Working Re	gister 1								xxxx
WREG2	0004								Working Re	gister 2								xxxx
WREG3	0006								Working Re	gister 3								xxxx
WREG4	8000		Working Register 4									xxxx						
WREG5	000A		Working Register 5									XXXX						
WREG6	000C		Working Register 6									xxxx						
WREG7	000E		Working Register 7									XXXX						
WREG8	0010		Working Register 8									xxxx						
WREG9	0012		Working Register 9									xxxx						
WREG10	0014		Working Register 10 2									xxxx						
WREG11	0016		Working Register 11 xx									xxxx						
WREG12	0018		Working Register 12									xxxx						
WREG13	001A								Working Ree	gister 13								xxxx
WREG14	001C								Working Ree	gister 14								xxxx
WREG15	001E								Working Ree	gister 15								0800
SPLIM	0020							Sta	ck Pointer Li	mit Register	•							xxxx
PCL	002E							Program	n Counter Lo	w Word Reg	gister							0000
PCH	0030	—	_	—	—	—	—	—	—			Progra	m Counter	High Byte F	Register			0000
TBLPAG	0032	—	_	—	—	—	—	—	—				· ·	ss Pointer F	.			0000
PSVPAG	0034		—	—	—	—	—		—		•	am Memory	Visibility P	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	eat Loop Cou	inter Regist			1	1	I.		•	xxxx
SR	0042	_	_		_	_	—	—	DC		IPL<2:0>		RA	N	OV	Z	С	0000
CORCON	0044	—	_	—	—	—	—	—	—	—	—	—	—	IPL3	PSV	—	—	0000
DISICNT	0052	_	_						Disable	e Interrupts	Counter R	egister					1	xxxx
BSRAM	0750		—	—	—	—	—	—	—	—	—	_	—		IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752		—	—	—	—	—	—	-	—	-	—	—	—	IW_SSR	IR_SSR	RL_SSR	0000

TABLE 4-1: CPU CORE REGISTERS MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>					
bit 15				<u> </u>			bit 8				
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PLLPC	ST<1:0>	—			PLLPRE<4:0>	>					
bit 7							bit (
Legend:		y = Value set	from Configu	ration bits on PC	R						
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	iown				
bit 15		er on Interrupt bi									
				nd the processor	clock/periphe	ral clock ratio is	set to 1:1				
	•	ts have no effec									
bit 14-12		Processor Clo	ck Reduction	Select bits							
	111 = FCY/12	-									
	110 = FCY/64 101 = FCY/32										
	100 = FCY/10										
	011 = FCY/8										
	010 = Fcy/4	. ,									
	001 = FCY/2										
	000 = Fcy/1		(4)								
bit 11		ZE Mode Enabl									
				etween the perip	oheral clocks a	and the process	or clocks				
		or clock/periphe									
bit 10-8			RC Oscillato	r Postscaler bits							
	111 = FRC c										
	110 = FRC divide by 64 101 = FRC divide by 32										
	100 = FRC c										
	011 = FRC c										
	010 = FRC c										
	001 = FRC c										
		livide by 1 (defa									
bit 7-6			Output Divide	er Select bits (als	o denoted as	'N2', PLL posts	caler)				
	11 = Output/ 10 = Reserve										
	01 = Output/										
	00 = Output/	. ,									
bit 5	•	nted: Read as '	0'								
bit 4-0	=			t Divider bits (als	so denoted as	'N1'. PLL preso	aler)				
	11111 = Inp					, 1	,				
	•										
	•										
	• 00001 = Inp	ut/3									

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **2:** This register is reset only on a Power-on Reset (POR).

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL		—	—	—	—
bit 15			•				bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7			•				bit 0

Legend:	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in hardware only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Compare x
	0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0						
		ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN						
bit 15							bit 8						
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0						
IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF						
bit 7							bit (
Legend:		C = Clear on	y bit										
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'							
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown						
bit 15-14	Unimplomon	ted. Dood oo '	0'										
bit 13	-	i ted: Read as ' mitter in Error		hit									
bit 15		er is in Bus Of		bit									
	0 = Transmitt	er is not in Bus	s Off state										
bit 12		mitter in Error		sive bit									
		er is in Bus Pa		_									
bit 11		er is not in Bus ver in Error Sta											
		is in Bus Pass		vebil									
	0 = Receiver is not in Bus Passive state												
bit 10		XWAR: Transmitter in Error State Warning bit											
		1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state											
bit 9			-										
DIL 9	RXWAR: Receiver in Error State Warning bit 1 = Receiver is in Error Warning state												
	0 = Receiver is not in Error Warning state												
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit												
		er or receiver i		0									
b # 7		er or receiver i		•									
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt request has occurred												
	0 = Interrupt request has not occurred												
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit												
		1 = Interrupt request has occurred											
64 F	•	request has no				h =)							
bit 5				ources in Clin	F<13:8> regist	(er)							
		request has oc request has no											
bit 4	•	ted: Read as '											
bit 3	•	Almost Full In		it									
	1 = Interrupt i	request has oc	curred										
		request has no											
bit 2		Buffer Overflo	•	ag bit									
		request has oc request has no											
bit 1		ffer Interrupt F											
		request has oc											
		request has no											
1.1.0	TDIE. TV Duf												
bit 0		fer Interrupt Fla											
DIT U	1 = Interrupt i	request has oc request has no	curred										

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
				:10:3>							
bit 15							bit				
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x				
	SID<2:0>		_	EXIDE	_	EID<1	7:16>				
bit 7							bit (
Legend:											
R = Readable bit W = Writable bit				U = Unimplem	ented bit, read	l as '0'					
-n = Value at POR '1' = Bit is s				'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15-5	1 = Message	Standard Identif address bit SII address bit SII	Dx must be '1								
bit 4	Unimplemer	ted: Read as '	0'								
bit 3		nded Identifier	Enable bit								
		<u>If MIDE = 1:</u>									
	 1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses 										
	O – Match on O	iy messayes w	illi slanuaru il		000						
	0 = Match on If MIDE = 0: Ignore EXID	E bit.									
bit 2	<u>If MIDE = 0:</u> Ignore EXID	E bit. Ited: Read as '	0'								
	<u>If MIDE = 0:</u> Ignore EXID Unimpleme r										
bit 2 bit 1-0	If MIDE = 0: Ignore EXID Unimplemer EID<17:16>:	ted: Read as '	ntifier bits	' to match filter							

REGISTER 19-17: CiRXFnEID: ECANTM MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			EID	<15:8>					
bit 15							bit 8		
DA4	D 44/	D///		D/4/	D04/				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			EID	<7:0>					
bit 7							bit 0		
Lanand									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown				

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-22: CIRXFUL1: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL15:RXFUL0:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CiRXFUL2: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL31:RXFUL16:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

	The buffers, SID, lot Special Function		a Field and R	eceive Status re	egisters are sto	ored in DMA RA	M. These are				
REGISTER	19-27: CiTRB (n = 0,	nSID: ECAN 1,, 31)	™ MODULE	BUFFER n S	TANDARD II	DENTIFIER					
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	—	—		SID<10:6>							
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
		SRR	IDE								
bit 7						1	bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown				
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12-2	SID<10:0>: \$	Standard Identi	fier bits								
bit 1	SRR: Substitu	ute Remote Re	quest bit								
	1 = Message 0 = Normal m	will request rer lessage	note transmi	ssion							
bit 0	1 = Message	d Identifier bit will transmit ex will transmit sta									

REGISTER 19-28: CiTRBnEID: ECAN[™] MODULE BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)

U-0

U-0

	—	—	—		EID<	:17:14>	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<13:6>			
bit 7							bit C
Legend:							
R = Readable b	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	

R/W-x

R/W-x

R/W-x

R/W-x

bit 15-12 Unimplemented: Read as '0'

U-0

bit 11-0 EID<17:6>: Extended Identifier bits

Γ

U-0

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 16. "Analog-to-Digital Converter (ADC)" (DS70183), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to 32 Analog-to-Digital input channels. These devices also have up to 2 Analog-to-Digital converter modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Two result alignment options (signed/unsigned)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the Analog-to-Digital Converter can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device.

A block diagram of the Analog-to-Digital Converter is shown in Figure 20-1.

20.2 Analog-to-Digital Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on the ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit

2.

b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, the DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

R = Readable -n = Value at P		W = Writable I '1' = Bit is set	DIT	U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unkno			nown
Legend:							
bit 7							bit (
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 20-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH^(1,2)

bit 15-0 CSS<31:16>: ADC Input Scan Selection bits

1 = Select ANx for input scan

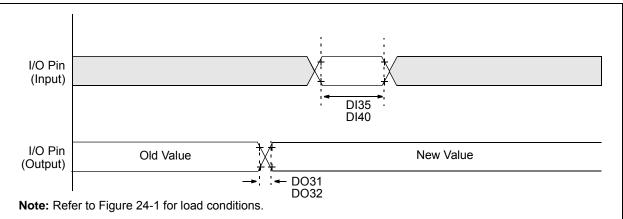
0 = Skip ANx for input scan

- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 20-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit			x = Bit is unkr	nown		

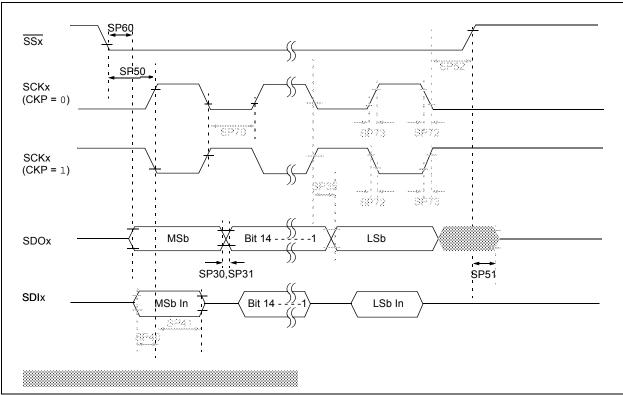
bit 15-0 CSS<15:0>: ADC Input Scan Selection bits

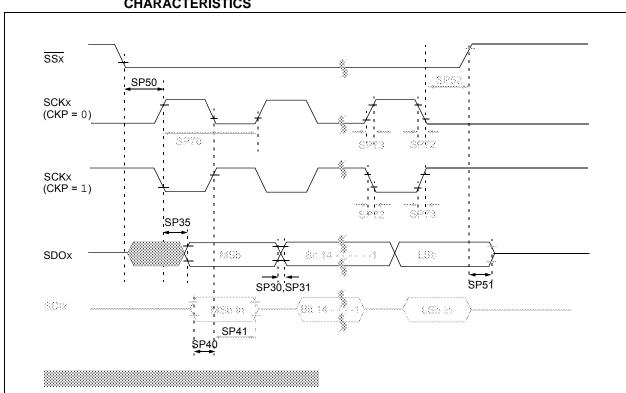

1 = Select ANx for input scan

0 = Skip ANx for input scan

Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREF-.

2: CSSx = ANx, where x = 0 through 15.





AC CHARACTERISTICS (unl		(unless other	Standard Operating Conditions: 3.0V to 3.6V unless otherwise stated) Deprating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time	e	_	10	25	ns	
DO32	TIOF	Port Output Fall Time			10	25	ns	—
DI35	TINP	INTx Pin High or Low	Time (input)	20	_	_	ns	_
DI40	Trbp	CNx High or Low Tim	e (input)	2		_	TCY	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 24-13: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 24-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CHA	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20a	Nr	Resolution	1:	2 data bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2	-	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	_	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	_	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity	—		—	—	Guaranteed
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	its with i	nternal '	VREF+/VREF-
AD20a	Nr	Resolution	1	2 data bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	—	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	—	Monotonicity	—		_	—	Guaranteed
		Dynamic	Performa	ance (12	-bit Mod	e)	
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	_
AD32a	SFDR	Spurious Free Dynamic Range	80		—	dB	_
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	_
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	

TABLE 24-40: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽¹⁾

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

АС СНА	RACTERIS	TICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity			_	—	Guaranteed	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity	—			—	Guaranteed	
		Dynamic	Performa	ance (10	-bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5		dB	_	
AD32b	SFDR	Spurious Free Dynamic Range	72	—	_	dB	_	
AD33b	Fnyq	Input Signal Bandwidth			550	kHz	_	
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits	—	

TABLE 24-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽¹⁾

Note 1: Injection currents > |0| can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

NOTES:

TABLE 25-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature								
Param No.	Characteristic	Characteristic Min Typ Max Units Conditions								
	LPRC @ 32.768 kHz ⁽¹⁾	LPRC @ 32.768 kHz ⁽¹⁾								
HF21	LPRC	-70 ⁽²⁾	_	+70 ⁽²⁾	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C \qquad -$	-			

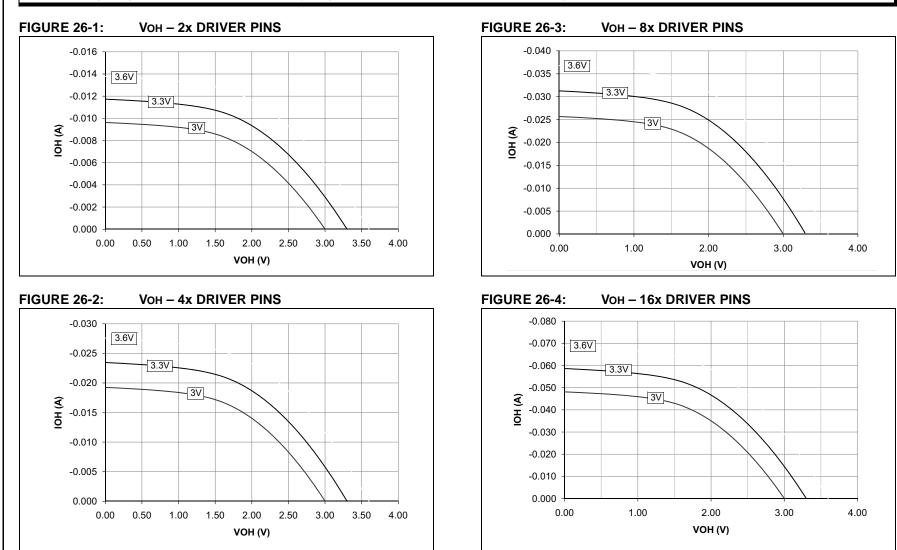
Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 25-10: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28		_	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	_		

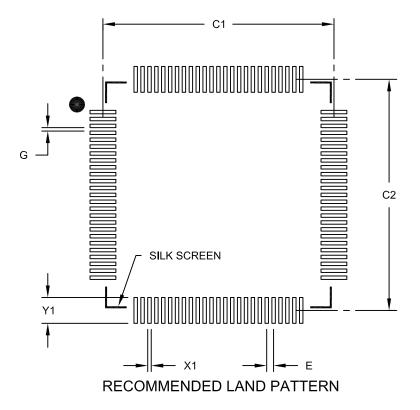
Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 25-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_		
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	_	—	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	—	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

26.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS


Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC24HJXXXGPX06A/X08A/X10A

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensior	Dimension			MAX		
Contact Pitch	E		0.40 BSC			
Contact Pad Spacing	C1		13.40			
Contact Pad Spacing	C2		13.40			
Contact Pad Width (X100)	X1			0.20		
Contact Pad Length (X100)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B