

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp206at-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE	4-6:	IIIVIE	R REG	ISTER N	IAP													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON		TSIDL		_	—	_	_	—	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tin	ner3 Holding	Register (fo	r 32-bit time	r operations of	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON		TSIDL		_	—	_	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T3CON	0112	TON	—	TSIDL		—	—	_	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116		Timer5 Holding Register (for 32-bit operations only)						xxxx									
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	_	_	—	—	—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL		_	—	—	—	—	TGATE	TCKP	S<1:0>	_	—	TCS	—	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124							Timer7 Hold	ing Register	(for 32-bit o	perations only	y)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON	—	TSIDL		_	—	—	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T7CON	012E	TON	—	TSIDL		—	—	—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132							Timer9 Hold	ing Register	(for 32-bit o	perations only	y)						xxxx
TMR9	0134								Timer9	Register								0000
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period I	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	_	—	—	—	—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T9CON	013C	TON	—	TSIDL	—	—	—	—	_	—	TGATE	TCKP	S<1:0>	—	—	TCS	_	0000

. . TIMED DEGIGTED MAD

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

REGIST	ER 6-1: RCO	N: RESET COI		GISTER ⁽¹⁾			
R/W-	-0 R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAF	PR IOPUWR		—			—	VREGS ⁽³⁾
bit 15	·						bit 8
R/M	0 R/W-0	R/M-0	R/\/_0	R/\/_0	R/\\/_0	R/M/-1	R/M-1
FXT	R SWR					BOR	POR
bit 7		OWBTEN	WBIO	OLLLI	IDEE	Bort	bit 0
Legend:			L :4			l = = (0)	
R = Read			DIT		mented dit, read		
-n = valu	e at POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unk	nown
bit 15	TRAPR: Tra	ap Reset Flag bit					
	$1 = A \operatorname{Trap} ($	Conflict Reset ha	s occurred	ما			
L:1 4 4		Jonflict Reset na	s not occurre	a M A	-4 [] 1:4		
DIC 14	1 = An illect	al opcode of	ction, an ille	vv Access Res dal address m	ode or uninitial	lized W registe	er used as an
	Addres	s Pointer caused	a Reset	ga: aaa.ccc			
	0 = An illeg	al opcode or uni	nitialized W F	Reset has not o	ccurred		
bit 13-9	Unimpleme	ented: Read as '	כ'	(2)			
bit 8	VREGS: Vo	Itage Regulator	Standby Durii	ng Sleep bit ⁽³⁾			
	\perp = Voltage	Regulator is acti Regulator goes i	nto standby i	ep mode mode durina SI	een		
bit 7	EXTR: Exte	rnal Reset (MCL	\overline{R}) Pin bit		000		
	1 = A Maste	er Clear (pin) Res	set has occur	red			
	0 = A Maste	er Clear (pin) Res	set has not or	ccurred			
bit 6	SWR: Softw	are Reset (Instru	uction) Flag b	oit .			
	1 = A RESE	r instruction has	not been exe	ed Souted			
bit 5	SWDTEN: S	Software Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is	enabled					
	0 = WDT is	disabled					
bit 4	WDTO: Wat	tchdog Timer Tim	ne-out Flag b	it			
	1 = WD1 tin 0 = WDT tin	ne-out has occur	red				
hit 3	SI FFP: Wa	ke-un from Slee	n Flag hit				
	1 = Device I	has been in Slee	p mode				
	0 = Device ł	has not been in S	Sleep mode				
bit 2	IDLE: Wake	-up from Idle Fla	ıg bit				
	1 = Device	was in Idle mode	ode				
bit 1	BOR: Brown	n-out Reset Flag	bit				
	1 = A Brown	n-out Reset has o	occurred				
	0 = A Browr	n-out Reset has r	not occurred				
bit 0	POR: Powe	r-on Reset Flag	bit				
	1 = A Power0 = A Power	r-on Reset has o r-on Reset has n	ccurred				
		I-OII Reset has h					
Note 1:	All of the Reset s	tatus bits may be	set or cleare	ed in software.	Setting one of th	iese bits in soft	ware does not
	cause a device R	Reset.					
2:	If the FWDTEN C	Configuration bit i	is '1' (unprog	rammed), the V	NDT is always e	enabled, regard	lless of the
٦.	For PIC24H.1256		(10A devices	this bit is unin	nplemented and	l reads back or	ogrammed

3: For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65-68	57-60	0x000086-0x00008C	0x000186-0x00018C	Reserved
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70-72	62-64	0x000090-0x000094	0x000190-0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-0x0000FE	0x0001A4-0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1 0x00006		0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

REGISTER 7-10:	IEC0: INTERRUPT ENABLE CONTROL REGISTER 0
----------------	---

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE
bit 7							bit 0
Logondy							
R = Readabl	le hit	W = Writable	bit	= Inimpler	nented hit rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	IOWN
				e Bitleele	alou		
bit 15	Unimplemer	nted: Read as	ʻ0'				
bit 14	DMA1IE: DM	IA Channel 1 E)ata Transfer (Complete Interr	upt Enable bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 13	AD1IE: ADC	1 Conversion (Complete Inter	rupt Enable bit			
	0 = Interrupt	request enable	abled				
bit 12	U1TXIE: UA	RT1 Transmitte	r Interrupt Ena	able bit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 11	U1RXIE: UA	RT1 Receiver I	nterrupt Enab	le bit			
	1 = Interrupt 0 = Interrupt	request enable	abled				
bit 10	SPI1IE: SPI1	Event Interrup	ot Enable bit				
	1 = Interrupt	request enable	ed				
	0 = Interrupt	request not en	abled				
bit 9	SPI1EIE: SP	11 Error Interru	pt Enable bit				
	$\perp = Interrupt$ 0 = Interrupt	request enable	a abled				
bit 8	T3IE: Timer3	Interrupt Enat	ole bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 7	T2IE: Timer2	Interrupt Enat	ole bit				
	0 = Interrupt	request enable	abled				
bit 6	OC2IE: Outp	out Compare Cl	nannel 2 Interr	upt Enable bit			
	1 = Interrupt	request enable	ed				
	0 = Interrupt	request not en	abled				
bit 5	IC2IE: Input	Capture Chanr	el 2 Interrupt	Enable bit			
	1 = Interrupt 0 = Interrupt	request enable	ed abled				
bit 4	DMA0IE: DM	1A Channel 0 E)ata Transfer (Complete Interr	upt Enable bit		
	1 = Interrupt	request enable	ed				
	0 = Interrupt	request not en	abled				
bit 3	T1IE: Timer1	Interrupt Enat	ole bit				
	$\perp = interrupt$ 0 = Interrupt	request enable	u abled				

REGISTER 1	0-3: PMD3	: PERIPHER	AL MODULI	E DISABLE CO	ONTROL RI	EGISTER 3	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD	_			—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
		—	_	—	—	I2C2MD	AD2MD ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15 bit 14 bit 13 bit 12 bit 11-2 bit 1 bit 1	T9MD: Timers 1 = Timer9 mo 0 = Timer9 mo T8MD: Timers 1 = Timer8 mo 0 = Timer8 mo T7MD: Timers 1 = Timer7 mo 0 = Timer7 mo T6MD: Timers 1 = Timer6 mo 0 = Timer6 mo 0 = Timer6 mo 12C2MD: 12C2 1 = 12C2 mod 0 = 12C2 mod	9 Module Disab odule is disable odule is enable 3 Module Disab odule is disable odule is disable odule is enable 7 Module Disab odule is enable 6 Module Disab odule is enable odule is enable dule is enabled ule is disabled ule is disabled ule is disabled	le bit d le bit d le bit d le bit d le bit d le bit				

Note 1: The PCFGx bits will have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The PIC24HJXXXGPX06A/X08A/X10A devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C Port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I^2C module can operate either as a slave or a master on an I^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please refer to the *"dsPIC33F/PIC24H Family Reference Manual"*.

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC		
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10		
bit 15	•				•		bit 8		
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC		
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF		
bit 7 bi									
Legend:		U = Unimpler	nented bit, rea	ad as 'O'		C = Clear on	ly bit		
R = Readable	bit	W = Writable	bit	HS = Set in h	nardware	HSC = Hardwa	are set/cleared		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	bit 15 ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation) 1 = NACK received from slave 0 = ACK received from slave Hardware set or clear at end of slave Acknowledge.								
bit 14	TRSTAT: Tran 1 = Master tra 0 = Master tra Hardware set	nsmit Status bi ansmit is in pro ansmit is not in at beginning o	t (when opera ogress (8 bits - progress of master trans	ting as I ² C ma + ACK) smission. Harc	ister, applicable Iware clear at e	to master trans nd of slave Ack	mit operation)		
bit 13-11	Unimplemen	ted: Read as '	0'						
bit 10	BCL: Master	Bus Collision I	Detect bit						
	1 = A bus coll 0 = No collisio Hardware set	lision has beer on : at detection o	n detected dur f bus collision	ing a master c	operation				
bit 9	GCSTAT: Ger 1 = General o 0 = General o Hardware set	neral Call Statu call address wa call address wa when address	us bit as received as not received a matches ger	d heral call addre	ess. Hardware c	lear at Stop det	tection.		
bit 8	ADD10: 10-B	it Address Sta	tus bit						
	1 = 10-bit add 0 = 10-bit add Hardware set	dress was mate dress was not i at match of 2r	ched matched nd byte of mat	ched 10-bit ad	ldress. Hardwar	e clear at Stop	detection.		
bit 7	IWCOL: Write	e Collision Det	ect bit		2				
	1 = An attemp 0 = No collision Hardware set	ot to write the I on : at occurrence	2CxTRN regist	ster failed beca CxTRN while b	ause the I ² C mo ousy (cleared by	odule is busy v software).			
bit 6	I2COV: Recei	ive Overflow F	lag bit						
	1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software)								
bit 5	D_A: Data/Ac	ddress bit (whe	n operating a	s I ² C slave)					
	 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte. 								
bit 4	P: Stop bit								
	1 = Indicates 0 = Stop bit w Hardware set	that a Stop bit as not detecte or clear when	has been det d last Start, Repeat	ected last ed Start or Sto	p detected.				

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

REGISTER ²	19-16: CiRXF (n = 0,	nSID: ECAN™ 1,, 15)	MODULE	ACCEPTANC	E FILTER n S	STANDARD ID	ENTIFIER		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			SID	<10:3>					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
	SID<2:0>		_	EXIDE	—	EID<	17:16>		
bit 7							bit 0		
Legend: R = Readabl	e bit	W = Writable	oit	U = Unimplei	mented bit. rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared		nown		
bit 15-5 bit 4 bit 3	SID<10:0>: S 1 = Message 0 = Message Unimplemen EXIDE: Exte If MIDE = 1: 1 = Match or 0 = Match or If MIDE = 0: Ignore EXID	SID<10:0>: Standard Identifier bits Message address bit SIDx must be '1' to match filter Message address bit SIDx must be '0' to match filter Unimplemented: Read as '0' EXIDE: Extended Identifier Enable bit If MIDE = 1: Match only messages with extended identifier addresses Match only messages with standard identifier addresses 							
bit 2 bit 1-0	Unimplemented: Read as '0' EID<17:16>: Extended Identifier bits 1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter								

REGISTER 19-17: CiRXFnEID: ECANTM MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
EID<15:8>										
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
	EID<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown				

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ MODULE FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MS	K<1:0>	F6MSK	<1:0>	F5MS	SK<1:0>	F4MSK<	:1:0>
bit 15							bit 8
					=		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MS	K<1:0>	F2MSK	<1:0>	FIMS	5K<1:0>	FUMSK<	:1:0> hit 0
							DILU
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknow	wn
bit 15-14	F7MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 7 b sters contair sters contair sters contair	it 1 mask 1 mask 1 mask			
bit 13-12	F6MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 6 bi isters contair isters contair isters contair	it n mask n mask n mask			
bit 11-10	0 F5MSK<1:0>: Mask Source for Filter 5 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask						
bit 9-8	F4MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 4 bi isters contair isters contair isters contair	it n mask n mask n mask			
bit 7-6	F3MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 3 bi isters contair isters contair isters contair	it n mask n mask n mask			
bit 5-4	F2MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 2 bi isters contair isters contair isters contair	it n mask n mask n mask			
bit 3-2	F1MSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 1 bi isters contair isters contair isters contair	it n mask n mask n mask			
bit 1-0	FOMSK<1:0> 11 = Reserver 10 = Acceptar 01 = Acceptar 00 = Acceptar	: Mask Source d; do not use nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	for Filter 0 b sters contair sters contair sters contair	it n mask n mask n mask			

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NB	—	—	CH0SB<4:0> ⁽¹⁾						
bit 15							bit 8		
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NA	—	—			CH0SA<4:0>(1)			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown		
bit 15	CH0NB: Char 1 = Channel (0 = Channel (nnel 0 Negative) negative input) negative input	Input Select is AN1 is VREF-	for Sample B b	it				
bit 14-13	Unimplemen	ted: Read as '0	,						
bit 12-8	CH0SB<4:0> 11111 = Cha 11110 = Cha	: Channel 0 Pos nnel 0 positive i nnel 0 positive i nnel 0 positive i nnel 0 positive i nnel 0 positive i	sitive Input Se nput is AN31 nput is AN30 nput is AN2 nput is AN1 nput is AN0	elect for Sample	e B bits ⁽¹⁾				
bit 7	CH0NA: Chan 1 = Channel (0 = Channel (nnel 0 Negative) negative input) negative input	Input Select is AN1 is VREF-	for Sample A b	it				
bit 6-5	Unimplemen	ted: Read as '0	,						
bit 4-0	CH0SA<4:0> 11111 = Cha 11110 = Cha	: Channel 0 Pos nnel 0 positive i nnel 0 positive i	sitive Input Se nput is AN31 nput is AN30	elect for Sample	e A bits ⁽¹⁾				
	00010 = Cha 00001 = Cha 00000 = Cha	nnel 0 positive i nnel 0 positive i nnel 0 positive i	nput is AN2 nput is AN1 nput is AN0						

REGISTER 20-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	
bit 15		-	-		•	-	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	
bit 7		-					bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cl∈	eared	x = Bit is unknown		

REGISTER 20-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH^(1,2)

bit 15-0 CSS<31:16>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 20-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	
bit 15		•	I			L	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	
bit 7		·		•			bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 CSS<15:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREF-.

2: CSSx = ANx, where x = 0 through 15.

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

23.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	15 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	25 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - **2:** Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
 - Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

FIGURE 24-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_		10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time				ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 24-13: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

NOTES: