

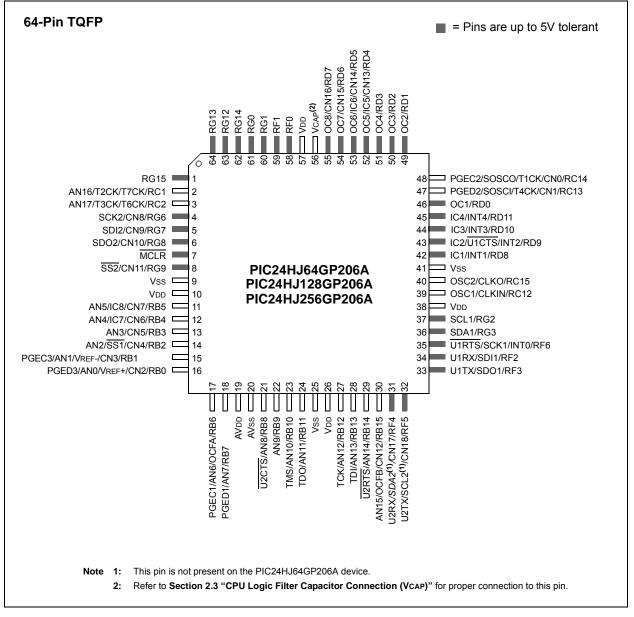
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

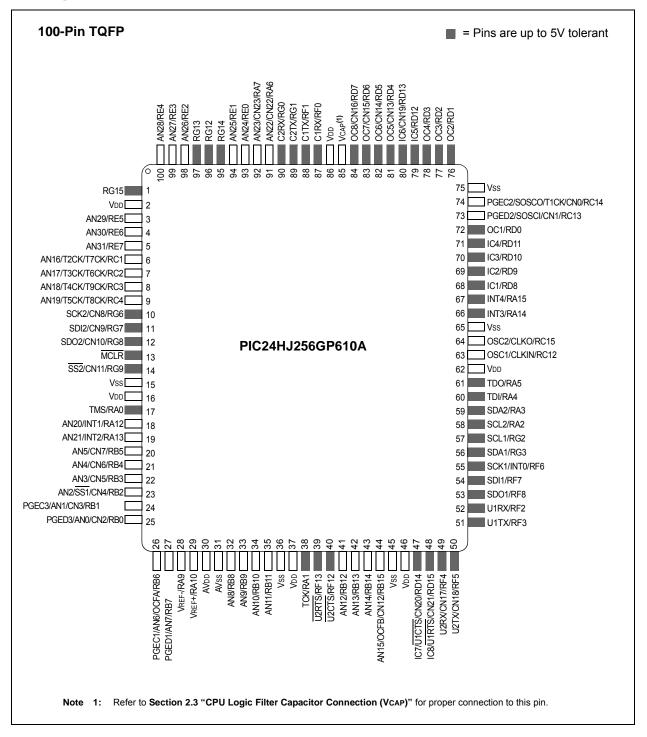
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp206at-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

© 2009-2012 Microchip Technology Inc.

3.4 Arithmetic Logic Unit (ALU)

The PIC24HJXXXGPX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register</u>. The <u>C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The PIC24HJXXXGPX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.4.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.4.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.4.3 MULTI-BIT DATA SHIFTER

The multi-bit data shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either a working register or a memory location.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

TABLE	4-6:	TIME	R REG	ISTER N	IAP													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register									0000						
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON		TSIDL		_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tim	ner3 Holding	Register (fo	r 32-bit time	operations c	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T3CON	0112	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116	Timer5 Holding Register (for 32-bit operations only)									xxxx							
TMR5	0118	Timer5 Register								0000								
PR4	011A	Period Register 4								FFFF								
PR5	011C	Period Register 5								FFFF								
T4CON	011E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	—	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124						-	Timer7 Hold	ing Register	(for 32-bit op	perations only	/)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T7CON	012E	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR8	0130	Timer8 Register							0000									
TMR9HLD	0132	Timer9 Holding Register (for 32-bit operations only)								xxxx								
TMR9	0134								Timer9	Register								0000
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period F	Register 9								FFFF
T8CON	013A	TON	_	TSIDL	—	—	—	—	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T9CON	013C	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
L			har an Daa								Dire Liberte ad av d							

. . TIMED DEGIGTED MAD

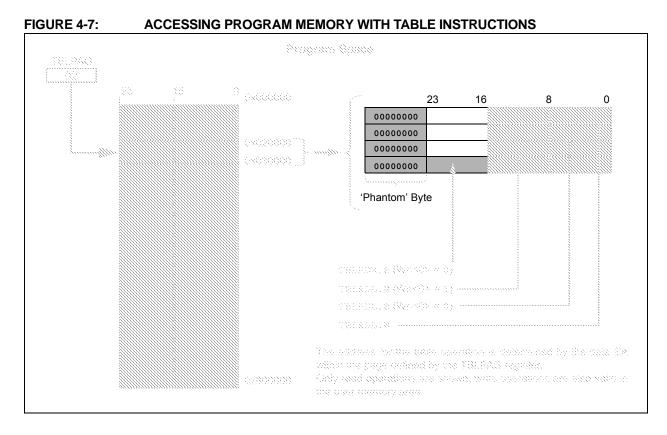
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.


 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

R/W-	0 R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAP	R IOPUWR	—	—	—	—	—	VREGS ⁽³⁾
bit 15	·						bit
R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR		SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	1 = A Trap Co	Reset Flag bit onflict Reset ha onflict Reset ha	s occurred	d			
bit 14	1 = An illega Address	l opcode deter Pointer caused	ction, an ille a Reset	W Access Rese gal address mo Reset has not oo	ode or uninitiali	zed W regist	er used as a
bit 13-9	Unimplemen	ted: Read as 'o)'				
bit 8	1 = Voltage R	age Regulator S egulator is acti egulator goes i	ve during Sle		еер		
bit 7	1 = A Master	al Reset (MCL Clear (pin) Res Clear (pin) Res	et has occur				
bit 6	1 = A reset	re Reset (Instru instruction has instruction has	been execut	ed			
bit 5	SWDTEN: So 1 = WDT is en 0 = WDT is di		Disable of W	DT bit ⁽²⁾			
bit 4	1 = WDT time	hdog Timer Tim e-out has occur e-out has not oc	red	it			
bit 3	SLEEP: Wake 1 = Device ha	e-up from Sleer as been in Slee	o Flag bit p mode				
bit 2	 0 = Device has not been in Sleep mode IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode 						
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred						
bit 0	POR: Power- 1 = A Power-	on Reset Flag I on Reset has o on Reset has n	bit ccurred				
Note 1:	All of the Reset sta cause a device Re	-	set or cleare	ed in software. S	Setting one of the	ese bits in soff	tware does no
2:	If the FWDTEN Co SWDTEN bit settin	ig.		-	-	-	
3:	For PIC24HJ256G	PX06A/X08A/X	(10A devices	, this bit is unim	plemented and	reads back p	rogrammed

3: For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

ABLE 7-1	1 1	T VECTORS	1	
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1: INTERRUPT VECTORS

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—		U1RXIP<2:0>		—		SPI1IP<2:0>				
bit 15							bit			
11.0		R/W-0		11.0		R/W-0				
U-0	R/W-1	SPI1EIP<2:0>	R/W-0	U-0	R/W-1	T3IP<2:0>	R/W-0			
bit 7		0111211 \2.02				1011 \2.02	bit			
510 1							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	Unimpleme	ented: Read as '	0'							
bit 14-12	-	:0>: UART1 Rece		Prioritv bits						
		rupt is priority 7 (-	-						
	•									
	•									
	001 = Inter	rupt is priority 1								
		rupt source is dis	abled							
bit 11	Unimpleme	ented: Read as '	0'							
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits									
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
		rupt is priority 1 rupt source is dis	abled							
bit 7		ented: Read as '								
bit 6-4	-	:0>: SPI1 Error II		ty bits						
		rupt is priority 7 (-	-						
	•									
	•									
		rupt is priority 1								
h :+ 0		rupt source is dis								
bit 3 bit 2-0	Unimplemented: Read as '0' T3IP<2:0>: Timer3 Interrupt Priority bits									
DIL 2-0		rupt is priority 7 (-	v interrunt)						
	•		riighest phon	ly interrupt)						
	•									
	• 001 = Inter	muchic criteriter d								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		U2TXIP<2:0>				U2RXIP<2:0>				
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		INT2IP<2:0>		_		T5IP<2:0>				
bit 7					1		bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	n = Value at POR '1' = Bit is set				eared	x = Bit is unkr	iown			
bit 15	Unimpleme	ented: Read as '	כי							
bit 14-12		0>: UART2 Trans rupt is priority 7 (I								
	•									
	• 001 = Interr	upt is priority 1								
		upt source is dis	abled							
bit 11	Unimpleme	ented: Read as '	o'							
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits									
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interrupt is priority 1									
		upt source is dis								
bit 7	-	ented: Read as '								
bit 6-4		>: External Interr								
	111 = Interr	rupt is priority 7 (I	nighest priori	ty interrupt)						
	•									
	•									
		upt is priority 1	ablad							
bit 3		upt source is dis ented: Read as 'o								
bit 2-0	-	Timer5 Interrupt								
DIL 2-0		upt is priority 7 (I	-	tv interrupt)						
	•	арт ю р. ю. т. у т. (.	ingineer priori	()						
	•									
	•									
	()() = Interr	upt is priority 1								

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

11.6 I/O Helpful Tips

- 1. In some cases, certain pins as defined in TABLE 24-9: "DC Characteristics: I/O Pin Input Specifications" under "Injection Current", have internal protection diodes to VDD and Vss. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2. (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 24.0 "Electrical Characteristics" for additional information.

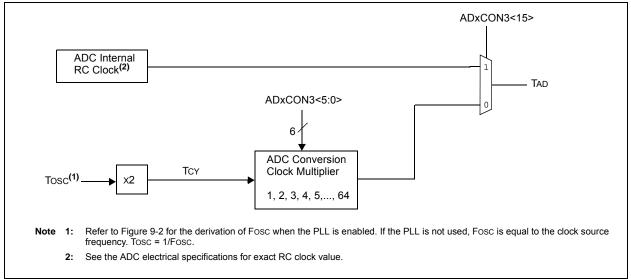
11.7 I/O Resources

Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546061

11.7.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools


REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	_	—	_	_	_	
pit 15							bit	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
—	—	_	—	—	—	FRMDLY	—	
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15	1 = Framed S		abled (SSx p	oin used as fram		input/output)		
bit 15	1 = Framed S	SPIx support en	abled (SSx p	oin used as fram		input/output)		
bit 15 bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran	SPIx support en SPIx support dis me Sync Pulse	abled (<mark>SSx</mark> p abled Direction Co			input/output)		
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output	abled (SSx p sabled Direction Co (slave) t (master)	ntrol bit		input/output)		
	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran	SPIx support en SPIx support dis me Sync Pulse nc pulse input (abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit	ntrol bit		input/output)		
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran 1 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high	ntrol bit		input/output)		
bit 14	1 = Framed S 0 = Framed S SPIFSD: France 1 = Frame sy 0 = Frame sy FRMPOL: France sy 0 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is activ	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low	ntrol bit		input/output)		
bit 14 bit 13	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran 1 = Frame sy 0 = Frame sy Unimplemen	Plx support en Plx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is acti nc pulse is acti	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low o'	ntrol bit		input/output)		
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: France 1 = Frame sy 0 = Frame sy 0 = Frame sy 0 = Frame sy Unimplement FRMDLY: France 1 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is actir nc pulse is actir ated: Read as '(ame Sync Pulse nc pulse coincir	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low o' e Edge Selec des with first	ntrol bit t bit bit clock		input/output)		
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: France 1 = Frame sy 0 = Frame sy 0 = Frame sy 0 = Frame sy Unimplement FRMDLY: France 1 = Frame sy 0 = Frame sy	SPIx support en SPIx support dis me Sync Pulse nc pulse input (nc pulse output ame Sync Pulse nc pulse is actir nc pulse is actir ted: Read as '(ame Sync Pulse	abled (SSx p sabled Direction Co (slave) t (master) e Polarity bit ve-high ve-low p' e Edge Selec des with first des first bit c	ntrol bit t bit bit clock		input/output)		

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC			
ACKSTAT	TRSTAT		—		BCL	GCSTAT	ADD10			
bit 15						1	bit 8			
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC			
IWCOL	I2COV	1	Р	S	R W	RBF	TBF			
bit 7	12000	D_A		3	R_VV	KDF	bit C			
Legend:		U = Unimpler	nented bit, rea	ad as '0'		C = Clear on	ly bit			
R = Readable	bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardwa	are set/cleared			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	(when operation 1 = NACK records) 0 = ACK records)	cknowledge St ing as I ² C mas ceived from slav ived from slav or clear at end	ter, applicable ve e		nsmit operation)				
bit 14	1 = Master tra 0 = Master tra	ansmit is in pro ansmit is not in	gress (8 bits - progress	ACK)		to master trans	·			
bit 13-11	Unimplemen	ted: Read as '	0'							
bit 10	BCL: Master	Bus Collision [Detect bit							
	0 = No collisio	lision has beer on at detection o		-	peration					
bit 9	GCSTAT: Ger	neral Call Statu	ıs bit							
	0 = General c	all address wa all address wa when address	is not received		ess. Hardware o	lear at Stop det	ection.			
bit 8	ADD10: 10-B	it Address Stat	tus bit							
	0 = 10-bit add	dress was mate dress was not r at match of 2r	natched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.			
bit 7	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection. IWCOL: Write Collision Detect bit									
	0 = No collisio	on	C C		ause the I ² C mo ousy (cleared by					
bit 6		lardware set at occurrence of write to I2CxTRN while busy (cleared by software). COV: Receive Overflow Flag bit								
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow 									
L:1 C		-	ot to transfer I2CxRSR to I2CxRCV (cleared by software). (when operating as I ² C slave)							
bit 5	1 = Indicates 0 = Indicates	that the last by that the last by	vte received w vte received w	as data as device add	ress by reception of	slave byte.				
bit 4	P: Stop bit				- 1	,				
	0 = Stop bit w	that a Stop bit as not detecte or clear when	d last		p detected.					

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 20-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3,4)

PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 bit 15 bit 8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15 bit 8	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
	bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PCFG<15:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: On devices with 2 analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
 - **3:** PCFGx = ANx, where x = 0 through 15.
 - 4: PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

21.5 JTAG Interface

PIC24HJXXXGPX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

Note: For further information, refer to the dsPIC33F/PIC24H Family Reference Manual", Section 24. "Programming and Diagnostics" (DS70207), which is available from the Microchip web site (www.microchip.com).

21.6 Code Protection and CodeGuard[™] Security

The PIC24H product families offer advanced implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual PIC24H implemented. The following sections provide an overview these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: For further information, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 23. "CodeGuard™ Security" (DS70239), which is available from the Microchip web site (www.microchip.com).

21.7 In-Circuit Serial Programming Programming Capability

PIC24HJXXXGPX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) document for details about ICSP programming capability.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

21.8 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP programming capability connections to MCLR, VDD, VSS and the PGEDx/ PGECx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles	Status Flags Affected
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
	-	CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
10	010	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
32	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
33	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
34	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Тур ⁽²⁾	Max.	Units	Conditions
		Clock	Paramete	ers ⁽¹⁾			
AD50	Tad	ADC Clock Period	117.6			ns	_
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—
		Con	version R	ate			
AD55	tCONV	Conversion Time		14 Tad		ns	_
AD56	FCNV	Throughput Rate	_		500	ksps	_
AD57	TSAMP	Sample Time	3 Tad			_	_
	•	Timir	g Parame	ters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad		Auto convert trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 TAD	—	3.0 Tad		_
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	_	_	_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_		20	μS	_

TABLE 24-42: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent						
Fror	n: Name							
	Company							
	Address							
	City / State / ZIP / Country							
	Telephone: ()	FAX: ()						
Application (optional):								
Wou	Ild you like a reply?YN							
Dev	ice: PIC24HJXXXGPX06A/X08A/X10A	Literature Number: DS70592D						
Questions:								
1.	1. What are the best features of this document?							
2.	2. How does this document meet your hardware and software development needs?							
3.	Do you find the organization of this document easy to follow? If not, why?							
4.	What additions to the document do you think would enhance the structure and subject?							
5.	What deletions from the document could be made without affecting the overall usefulness?							
6.	Is there any incorrect or misleading information (what and where)?							
7.	How would you improve this document?							

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62076-345-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.