

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 010.00	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp210a-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

IABLE 4	-19:	ECAN	1 REGIS		AP WHE	:N C1C	RL1.W	IN = 0F	OR PIC	24HJXX	XGP50	5A/510A	V610A L	EVICE	SONLY			
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	e definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CO N	0430	TXEN1	TX ABT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CO N	0432	TXEN3	TX ABT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CO N	0434	TXEN5	TX ABT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CO N	0436	TXEN7	TX ABT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440								Recieved I	Data Word								xxxx
C1TXD	0442		Transmit Data Word xxxx															

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See definit	ion when W	/IN = x							
C1BUFPNT1	0420		F3BP	<3:0>		F2BP<3:0> F1BP<3:0> F0BP<3:0>							0000					
C1BUFPNT2	0422		F7BP	<3:0>			F6BF	><3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11BF	P<3:0>			F10B	P<3:0>		F9BP<3:0> F8BP<3:0>					0000			
C1BUFPNT4	0426	F15BP<3:0>				F14BP<3:0>				F13BP<3:0>		F12BP<3:0>				0000		
C1RXM0SID	0430				SID<	10:3>	1:3>				SID<2:0>		—	MIDE	—	EID<1	7:16>	xxxx
C1RXM0EID	0432				EID<	15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	10:3>):3>			SID<2:0> —			MIDE	_	EID<1	7:16>	xxxx	
C1RXM1EID	0436		EID<15:8>							EID<	7:0>				xxxx			
C1RXM2SID	0438	SID<			10:3>					SID<2:0>		_	MIDE	_	EID<1	7:16>	xxxx	
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF0EID	0442				EID<	15:8>							EID<	7:0>				xxxx
C1RXF1SID	0444		SID<			10:3>	0:3>				SID<2:0>		—	EXIDE		EID<1	7:16>	xxxx

© 2009-2012 Microchip Technology Inc.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		CNIP<2:0>		—		—	—
bit 15							bit 8
		5444			-		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		MI2C1IP<2:0>		—		SI2C1IP<2:0>	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	כי				
bit 14-12	CNIP<2:0>:	Change Notifica	tion Interrupt	t Priority bits			
	111 = Interru	upt is priority 7 (nighest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
		upt source is dis	abled				
bit 11-7	Unimpleme	nted: Read as '	o'				
bit 6-4	MI2C1IP<2:	0>: I2C1 Master	Events Inter	rupt Priority bits	;		
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	•						
	• 001 = Interru	upt is priority 1					
		upt is priority 1 upt source is dis	abled				
bit 3	000 = Interru						
	000 = Interru Unimpleme	upt source is dis	כ'	pt Priority bits			
	000 = Interru Unimpleme SI2C1IP<2:0	upt source is dis nted: Read as '	o' Events Interru				
	000 = Interru Unimpleme SI2C1IP<2:0	upt source is dis nted: Read as ' I>: I2C1 Slave E	o' Events Interru				
	000 = Interru Unimpleme SI2C1IP<2:0	upt source is dis nted: Read as ' I>: I2C1 Slave E	o' Events Interru				
bit 3 bit 2-0	000 = Intern Unimplemen SI2C1IP<2:0 111 = Intern • • • 001 = Intern	upt source is dis nted: Read as ' I>: I2C1 Slave E	_D ' Events Interru nighest priori				

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C2TXIP<2:0>		—		C1TXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA7IP<2:0>		—		DMA6IP<2:0>	
bit 7							bit
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as 'd)'				
bit 14-12	-	>: ECAN2 Trans		quest Interrupt	Priority bits		
		ipt is priority 7 (ł					
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is disa	abled				
bit 11	Unimplemer	nted: Read as 'd)'				
bit 10-8	C1TXIP<2:0	>: ECAN1 Trans	smit Data Rec	quest Interrupt	Priority bits		
	111 = Interru	ipt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	• 001 = Interru	pt is priority 1					
		ipt source is disa	abled				
bit 7	Unimplemer	nted: Read as 'o)'				
bit 6-4	DMA7IP<2:0	>: DMA Channe	el 7 Data Trar	nsfer Complete	e Interrupt Pric	ority bits	
	111 = Interru	ıpt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	• 001 = Interru	pt is priority 1					
		ipt source is disa	abled				
bit 3		nted: Read as '0					
bit 2-0	DMA6IP<2:0	>: DMA Channe	el 6 Data Trar	nsfer Complete	e Interrupt Pric	ority bits	
		ipt is priority 7 (h		•		5	
	•						
	•						
	• 001 = Interru	unt in priority 1					

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

NOTES:

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	_	_	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	

-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

REGISTER 19-2: CiCTRL2: ECAN™ MODULE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	_		_	—		—				
bit 15		·			•		bit 8				
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
_	—	_			DNCNT<4:0>	:0>					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-5	Unimplemen	ted: Read as '	0'								
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits							
	10010-1111	1 = Invalid sel	ection								
	10001 = Con	npare up to dat	a byte 3, bit 6	with EID<17>							
	•										
	•										
	•										
		npare up to dat not compare da		with EID<0>							

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
		ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit (
Legend:		C = Clear on	y bit				
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplomon	ted. Dood oo '	0'				
bit 13	-	i ted: Read as ' mitter in Error		hit			
bit 15		er is in Bus Of		bit			
	0 = Transmitt	er is not in Bus	s Off state				
bit 12		mitter in Error		sive bit			
		er is in Bus Pa		_			
bit 11		er is not in Bus ver in Error Sta					
		is in Bus Pass		vebil			
	0 = Receiver	is not in Bus P	assive state				
bit 10		nsmitter in Erro		ng bit			
		er is in Error W					
bit 9		er is not in Error	-				
DIL 9		ceiver in Error is in Error War	-	DIL			
		is not in Error					
bit 8	EWARN: Trai	nsmitter or Red	ceiver in Error	State Warning	bit		
		er or receiver i		0			
b # 7		er or receiver i		•			
bit 7		I Message Rec request has oc		of Flag bit			
	•	request has no					
bit 6	WAKIF: Bus	Wake-up Activ	ity Interrupt F	ag bit			
		request has oc					
64 F	•	request has no				h =)	
bit 5				ources in Clin	F<13:8> regist	(er)	
		request has oc request has no					
bit 4	-	ted: Read as '					
bit 3	•	Almost Full In		it			
	1 = Interrupt i	request has oc	curred				
	•	request has no					
bit 2		Buffer Overflo	•	ag bit			
		request has oc request has no					
bit 1		ffer Interrupt F					
		request has oc					
		request has no					
1.1.0	TDIE. TV Duf						
bit 0		fer Interrupt Fla					
DIT U	1 = Interrupt i	request has oc request has no	curred				

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—	_	—		DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 20-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3,4)

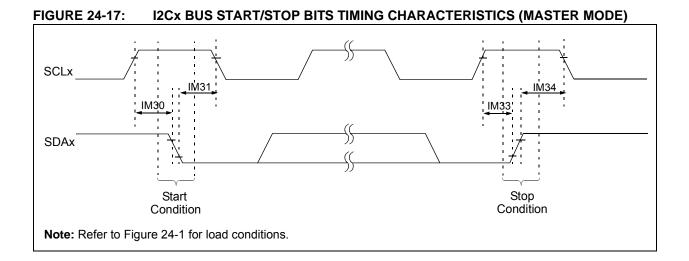
| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | - | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | | | | | | | bit 0 |

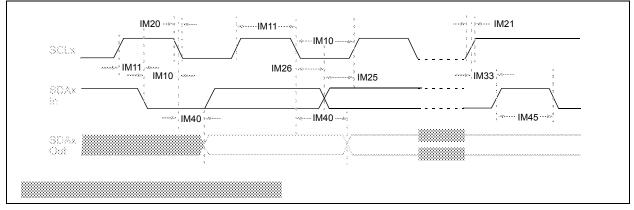
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

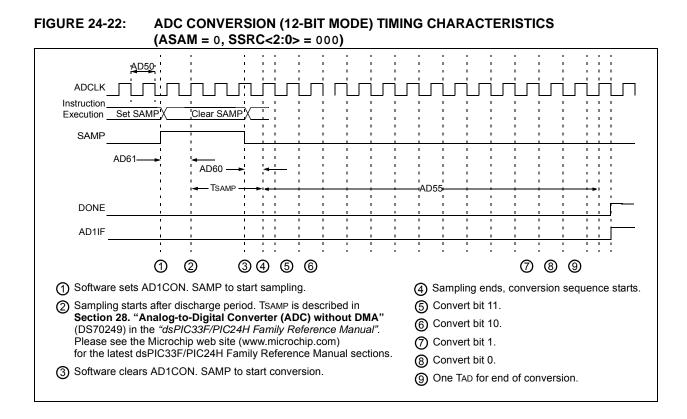
bit 15-0 **PCFG<31:16>:** ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss


0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.


TABLE 21-2:	CONFIGURATION BITS DESCRIPTION			
Bit Field	Register	RTSP Effect	Description	
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected	
BSS<2:0>	FBS	Immediate	 Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0x0007FE 010 = High security; boot program Flash segment starts at End of VS, ends at 0x0007FE Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE 001 = High security; boot program Flash segment starts at End of VS, ends at 0x001FFE 001 = High security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 	
			 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x003FFE 000 = High security; boot program Flash segment starts at End of VS, ends at 0x003FFE 	
RBS<1:0>	FBS	Immediate	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes	
SWRP	FSS	Immediate	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected	

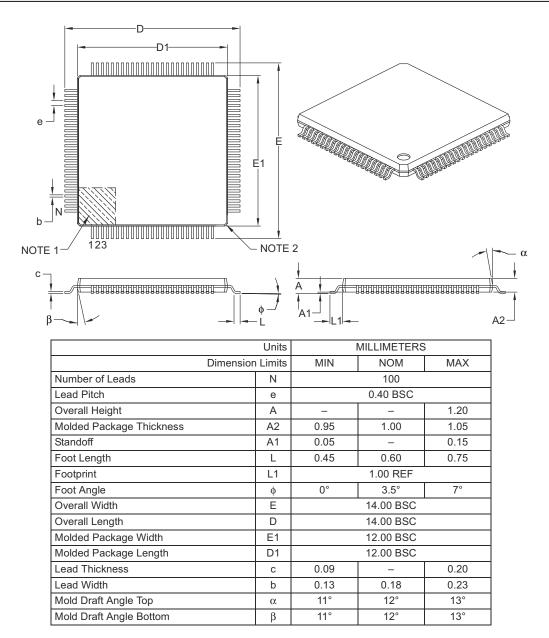

TABLE 21-2: CONFIGURATION BITS DESCRIPTION

NOTES:

CHARAG	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	Clock Parameters							
HAD50	TAD	ADC Clock Period ⁽¹⁾	147			ns	—	
Conversion Rate								
		001						

TABLE 25-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 25-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Clock Parameters								
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_		ns	_	
Conversion Rate								
HAD56	FCNV	Throughput Rate ⁽¹⁾			800	Ksps	_	
	These permeters are characterized but not tested in mean feet wing							

Note 1: These parameters are characterized but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

APPENDIX B: REVISION HISTORY

Revision A (April 2009)

This is the initial released version of the document.

Revision B (October 2009)

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-1:MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Microcontrollers"	Added information on high temperature operation (see "Operating Range: ").
Section 10.0 "Power-Saving Features"	Updated the last paragraph to clarify the number of cycles that occur prior to the start of instruction execution (see Section 10.2.2 "Idle Mode").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADCx block diagram (see Figure 20-1).
Section 21.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 21.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 21-1).
Section 24.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 24-7).
	Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 24-36).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 24-12).
	Updated the Internal LPRC Accuracy parameters (see Table 24-18 and Table 24-19).
	Updated the ADC Module Specifications (12-bit Mode) parameters AD23a and AD24a (see Table 24-40).
	Updated the ADC Module Specifications (10-bit Mode) parameters AD23b and AD24b (see Table 24-41).
Section 25.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.