

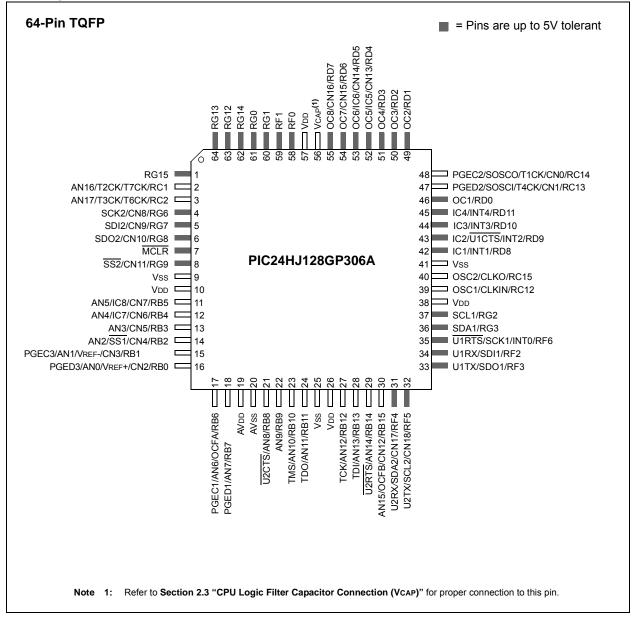
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp210at-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

IADLE 4-2	I. E		EGISTE			ZUIKL					230GF		EVICE	3 UNLI				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	_	CSIDL	ABAT	—	RE	EQOP<2:0	>	OPN	/ODE<2:0	>	—	CANCAP	_	—	WIN	0480
C2CTRL2	0502	_	_	_	_	_	_	_	_	_	_	_		C	NCNT<4:)>		0000
C2VEC	0504	_	_	_		FI	LHIT<4:0>			_				ICODE<6:0	0>			0000
C2FCTRL	0506	C	MABS<2:0	>	—	_	_	_	—	—	_	—			FSA<4:0>			0000
C2FIFO	0508	_	_			FBP<5	:0>			_	_			FNRE	3<5:0>			0000
C2INTF	050A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	Γ<7:0>							RERRC	NT<7:0>				0000
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SI	EG1PH<2	:0>	F	RSEG<2:	0>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MS	<<1:0>	F6MSI	< <1:0>	F5MSł	<<1:0>	F4MS	<<1:0>	F3MSK<	<1:0>	F2MSH	<1:0> F1MSK<1:0> F0MSK<1:0>				0000	
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0> F9MSK<1:0> F8MSK<1:0>				0000	

TABLE 4-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR PIC24HJ256GP610A DEVICES ONLY

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR PIC24HJ256GP610A DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	edefinition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	l<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PR	l<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	l<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PR	<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	l<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PR	l<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	l<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PR	l<1:0>	xxxx
C2RXD	0540								Recieved	Data Word								xxxx
C2TXD	0542								Transmit [Data Word								xxxx

PIC24HJXXXGPX06A/X08A/X10A

TABLE 4-28: PORTE REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	_		_	_	_	_		TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	OOFF
PORTE	02DA	_	-	_	_	-	-		_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	_	_	_	_	_	-	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	_	TRISF13	TRISF12	—	_	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13	RF12	—	_	-	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	_	LATF13	LATF12	_	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF ⁽²⁾	06DE	-	-	ODCF13	ODCF12		-		ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_		TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	-	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	-	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG ⁽²⁾	06E4	ODCG15	ODCG14	ODCG13	ODCG12	-	_	ODCG9	ODCG8	ODCG7	ODCG6	_	-	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-34: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE INSTRUCTIONS

Move instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the Addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared between both source and destination (but typically only used by one).

In summary, the following Addressing modes are supported by move instructions:

- Register Direct
- · Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all	instructi	ons	suppo	ort	all	the
	Addressi	ng mo	des	give	n	ab	ove.
	Individua	l instru	ction	s ma	ay	sup	port
	different	subsets	of	these	Ado	dres	sing
	modes.						

4.3.4 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Interfacing Program and Data Memory Spaces

The PIC24HJXXXGPX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24HJXXXGPX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.4.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the page (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - Perform a dummy table write operation (TBLWTL) to any address within the page that needs to be erased.
 - d) Write 0x55 to NVMKEY.
 - e) Write 0xAA to NVMKEY.
 - f) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	i
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA<15:0> pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

Note: A program memory page erase operation is set up by performing a dummy table write (TBLWTL) operation to any address within the page. This methodology is different from the page erase operation on dsPIC30F/33F devices in which the erase page was selected using a dedicated pair of registers (NVMADRU and NVMADR).

PIC24HJXXXGPX06A/X08A/X10A

NOTES:

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 3	CNIF: Input Change Notification Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C2TXIP<2:0>		—		C1TXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA7IP<2:0>		—		DMA6IP<2:0>	
bit 7							bit
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as 'd)'				
bit 14-12	-	>: ECAN2 Trans		quest Interrupt	Priority bits		
		ipt is priority 7 (ł					
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is disa	abled				
bit 11	Unimplemer	nted: Read as 'd)'				
bit 10-8	C1TXIP<2:0	>: ECAN1 Trans	smit Data Rec	quest Interrupt	Priority bits		
	111 = Interru	ipt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	• 001 = Interru	pt is priority 1					
		ipt source is disa	abled				
bit 7	Unimplemer	nted: Read as 'o)'				
bit 6-4	DMA7IP<2:0	>: DMA Channe	el 7 Data Trar	nsfer Complete	e Interrupt Pric	ority bits	
	111 = Interru	ıpt is priority 7 (ł	nighest priorit	y interrupt)	·		
	•						
	•						
	• 001 = Interru	pt is priority 1					
		ipt source is disa	abled				
bit 3		nted: Read as '0					
bit 2-0	DMA6IP<2:0	>: DMA Channe	el 6 Data Trar	nsfer Complete	e Interrupt Pric	ority bits	
		ipt is priority 7 (h		•		5	
	•						
	•						
	• 001 = Interru	unt in priority 1					

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>			-	NOSC<2:0>(2)	
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOCK	<u> </u>	LOCK	_	CF		LPOSCEN	OSWEN
bit 7							bit 0
Legend:		y = Value set	from Configui	ation bits on P	OR	C = Clear only	y bit
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as '	n'				
bit 14-12	-	Current Oscilla		hits (read-only	0		
511112		C oscillator (FF			,		
		RC oscillator (FF					
		ower RC oscilla					
		dary oscillator (• • •				
	011 = Prima	ry oscillator (XT	, HS, EC) with	ו PLL			
		ry oscillator (XT					
		RC Oscillator (Fl	,	le-by-N and PL	L (FRCDIVN ·	+ PLL)	
		RC oscillator (FF					
bit 11	-	nted: Read as '		(2)			
bit 10-8		New Oscillator					
		RC oscillator (FF	,	•			
		RC oscillator (FF Power RC oscilla		e-by-16			
		idary oscillator (
		ry oscillator (XT		1 PLL			
		ry oscillator (XT					
		RC Oscillator (FI		le-by-N and PL	L (FRCDIVN ·	+ PLL)	
1		RC oscillator (FF					
bit 7		Clock Lock Ena			ana la alca d		
		SM0 = 1), the closed $SM0 = 0$), the closed				ad a	
		nd PLL selection					
bit 6	Unimplemer	nted: Read as '	0'		·		
bit 5	LOCK: PLL I	Lock Status bit (read-only)				
		s that PLL is in I s that PLL is ou				l is disabled	
bit 4		nted: Read as '					
bit 3	-	ail Detect bit (rea		plication)			
	1 = FSCM h	as detected clo as not detected	ck failure	. ,			
bit 2		nted: Read as '					
	-	ster require an i	unlock sequer		ection 7. "Os	cillator" (DS7018	86) in the
		•			h PI L and EP(CPLL mode are n	ot permitted
						lication must swi	
	ode as a transiti						

- mode as a transition clock source between the two PLL modes.
- 3: This register is reset only on a Power-on Reset (POR).

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: ECAN1 Module Disable bit 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit⁽¹⁾
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled
- **Note 1:** PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

18.3 UART Control Registers

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>		
bit 15							bit		
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL		
bit 7							bit		
Legend:		HC = Hardwa	re cleared						
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown		
bit 15	UARTEN: UA	ARTx Enable bi	t(1)						
	1 = UARTx is	s enabled; all L	ARTx pins are	e controlled by	UARTx as defi	ned by UEN<1:	0>		
	0 = UARTx is				port latches; L				
	minimal								
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	USIDL: Stop in Idle Mode bit								
		nue module ope			dle mode				
		e module opera							
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾ 1 = IrDA [®] encoder and decoder enabled								
		coder and dec coder and dec							
bit 11		te Selection for		i+					
		oin in Simplex n		it.					
		oin in Flow Con							
bit 10	Unimplemen	ted: Read as '	0'						
bit 9-8	UEN<1:0>: U	JARTx Enable I	oits						
					; UxCTS pin co	ntrolled by port	latches		
		JxRX, UxCTS a							
					ed; UxCTS pin c S and UxRTS/E				
	port latcl		ire enableu an				olled by		
bit 7	•	e-up on Start bi	t Detect Durine	a Sleep Mode	Enable bit				
		-			upt generated o	n falling edge; t	oit cleared		
		are on following		• •	1 0	0 0 /			
	0 = No wake	-up enabled							
bit 6	LPBACK: UA	ARTx Loopback	Mode Select	bit					
		oopback mode							
	-	k mode is disal							
bit 5		o-Baud Enable					e = =		
		aud rate meas ny data; cleare			er – requires re	ception of a Syl	nc field (0x55		
		e measuremen		• •					
	2.30100								
Note 1: Ref	er to Section 1	I 7. "UART " (D	S70188) in the	e "dsPIC33F/P	PIC24H Family F	Reference Manu	<i>ual"</i> for		
	ormation on ena								
о т. ·	- f t	, available fart			a)				

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*, Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJXXXGPX06A/X08A/X10A devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- 3 full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation

- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

The CAN module transmits various types of frames which include data messages, remote transmission requests and as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID).

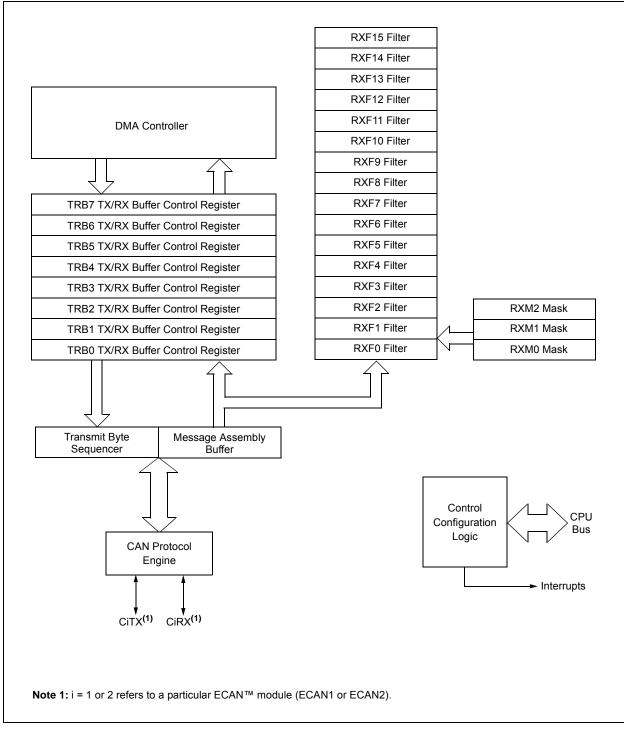
- Extended Data Frame: An extended data frame is similar to a standard data frame but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

Overload Frame:


An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

PIC24HJXXXGPX06A/X08A/X10A

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0
F15M	SK<1:0>	F14MS	K<1:0>	F13M	SK<1:0>	F12MS	K<1:0>	
bit 15								bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0
F11M	SK<1:0>	F10MS	K<1:0>	F9MS	SK<1:0>	F8MS	K<1:0>	
bit 7								bit (
<u> </u>								
Legend:			,					
R = Readable		W = Writable		•	nented bit, rea			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown	
bit 15-14	E15MSK-1.0	>: Mask Sourc	e for Filter 15	bit				
DIL 10-14		ed; do not use		bit				
		ince Mask 2 reg	gisters contair	n mask				
		ince Mask 1 reg						
	00 = Accepta	ince Mask 0 reg	gisters contair	n mask				
bit 13-12		>: Mask Sourc	e for Filter 14	bit				
		ed; do not use	vietere eerteiv	maal				
		ince Mask 2 reg ince Mask 1 reg						
		ince Mask 0 reg						
bit 11-10	-	>: Mask Sourc	-					
	11 = Reserve	ed; do not use						
		ince Mask 2 reg						
		nce Mask 1 reg						
h it 0 0	-	ince Mask 0 reg						
bit 9-8		I>: Mask Sourc ed; do not use	e for Filter 12	DIL				
		ince Mask 2 reg	isters contair	n mask				
		ince Mask 1 reg						
	00 = Accepta	ince Mask 0 reg	jisters contair	n mask				
bit 7-6		>: Mask Sourc	e for Filter 11	bit				
		ed; do not use						
		ince Mask 2 reg						
		ince Mask 1 reg ince Mask 0 reg						
bit 5-4	-	>: Mask Sourc						
		ed; do not use						
	10 = Accepta	nce Mask 2 reg	jisters contair	n mask				
		nce Mask 1 reg						
	-	ince Mask 0 reg	-					
bit 3-2		: Mask Source	for Filter 9 bi	t				
		ed; do not use ince Mask 2 reg	nisters contair	n mask				
		ince Mask 1 reg						
		ince Mask 0 reg						
bit 1-0		. Mask Source						
	11 = Reserve	ed; do not use						
		ince Mask 2 reg						
	01 = Accepta	nce Mask 1 reg	gisters contair	n mask				
		nce Mask 0 reg						

REGISTER 20-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3,4)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | - | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PCFG<31:16>:** ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this case all port pins multiplexed with ANx will be in Digital mode.

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

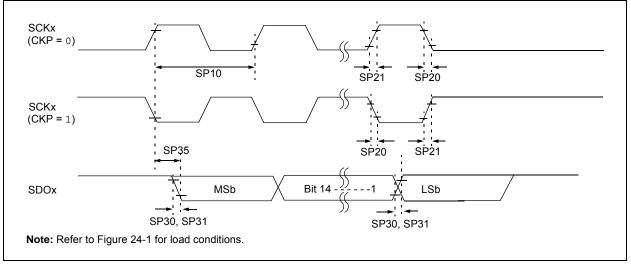
- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

23.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:


- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

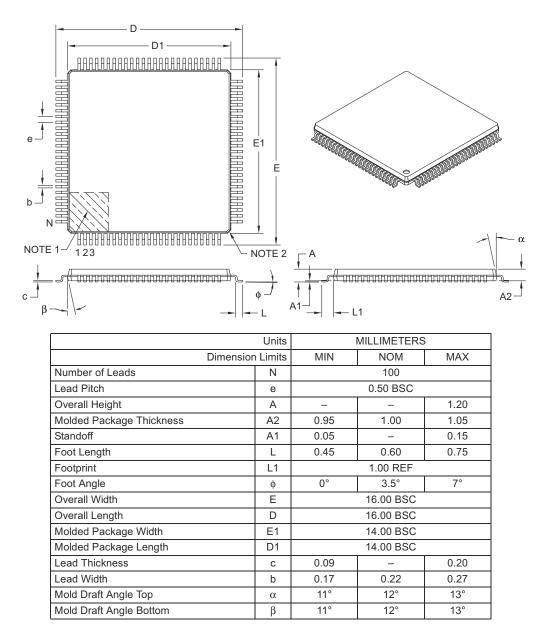

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 24-29	—	—	0,1	0,1	0,1	
10 MHz	—	Table 24-30	—	1	0,1	1	
10 MHz	—	Table 24-31	—	0	0,1	1	
15 MHz	—	—	Table 24-32	1	0	0	
11 MHz	—	—	Table 24-33	1	1	0	
15 MHz	_	_	Table 24-34	0	1	0	
11 MHz			Table 24-35	0	0	0	

FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

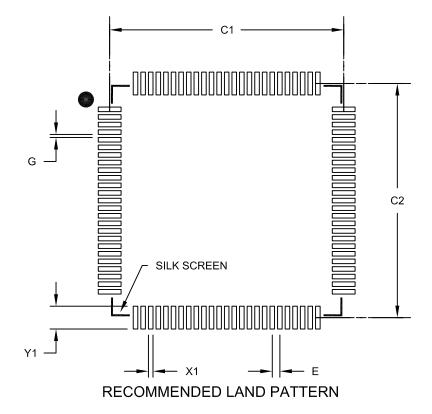
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

PIC24HJXXXGPX06A/X08A/X10A

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

PIC24HJXXXGPX06A/X08A/X10A

R

Reader Response	2
ADxCHS0 (ADCx Input Channel 0 Select	,
ADxCHS123 (ADCx Input	
Channel 1, 2, 3 Select)	
ADxCON2 (ADCx Control 2)	
ADxCON3 (ADCx Control 3)214 ADxCON4 (ADCx Control 4)215	
ADxCON4 (ADCx Control 4)215 ADxCSSH (ADCx Input Scan Select High)218	
ADxCSSI (ADCx Input Scan Select Fight)	, ,
ADxPCFGH (ADCx Port Configuration High)	
ADxPCFGL (ADCx Port Configuration Low)	
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) 195	
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 196	
CiCFG1 (ECAN Baud Rate Configuration 1) 190	
CiCFG2 (ECAN Baud Rate Configuration 2) 191	
CiCTRL1 (ECAN Control 1) 182	
CiCTRL2 (ECAN Control 2) 183	
CiEC (ECAN Transmit/Receive Error Count))
CIFCTRL (ECAN FIFO Control) 185	5
CiFEN1 (ECAN Acceptance Filter Enable) 192	
CiFIFO (ECAN FIFO Status)186	5
CiFMSKSEL1 (ECAN Filter 7-0 Mask	
Selection)198, 199)
CiINTE (ECAN Interrupt Enable) 188	
CiINTF (ECAN Interrupt Flag)187	'
CiRXFnEID (ECAN Acceptance Filter n	
Extended Identifier) 197	'
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier) 197	
CiRXFUL1 (ECAN Receive Buffer Full 1)201	
CiRXFUL2 (ECAN Receive Buffer Full 2)	
CiRXMnEID (ECAN Acceptance Filter Mask n	
Extended Identifier))
	,
Standard Identifier) 200 CiRXOVF1 (ECAN Receive Buffer Overflow 1) 202	
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	
CiTRBnDLC (ECAN Buffer n Data	•
Length Control)	
CiTRBnEID (ECAN Buffer n Extended Identifier) 204	
CiTRBnSID (ECAN Buffer n Standard Identifier) 204	
CiTRBnSTAT (ECAN Receive Buffer n Status)	
CiTRmnCON (ECAN TX/RX Buffer m Control)	
CiVEC (ECAN Interrupt Code)	
CLKDIV (Clock Divisor) 128	
CORCON (Core Control)	ŀ
DMACS0 (DMA Controller Status 0)	
DMACS1 (DMA Controller Status 1) 121	
DMAxCNT (DMA Channel x Transfer Count) 118	
DMAxCON (DMA Channel x Control)115	
DMAxPAD (DMA Channel x Peripheral Address) 118	
DMAxREQ (DMA Channel x IRQ Select) 116	j
DMAxSTA (DMA Channel x RAM Start	
Address A) 117	,
DMAxSTB (DMA Channel x RAM Start	_
Address B)	
DSADR (Most Recent DMA RAM Address) 122	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)170	

ICxCON (Input Capture x Control)	154
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 1)	
IFS3 (Interrupt Flag Status 2)	
IFS4 (Interrupt Flag Status 4)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
IPC11 (Interrupt Priority Control 11)	
IPC12 (Interrupt Priority Control 12)	105
IPC13 (Interrupt Priority Control 13)	106
IPC14 (Interrupt Priority Control 14)	107
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
NVMCON (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	130
PLLFBD (PLL Feedback Divisor)	129
PMD1 (Peripheral Module Disable Control	
Register 1)	135
PMD1 (Peripheral Module Disable Control	
Register 1)	135
PMD2 (Peripheral Module Disable Control	
Register 2)	137
PMD3 (Peripheral Module Disable Control	
Register 3)	139
RCON (Reset Control)	
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU Status)	
T1CON (Timer1 Control)	140
TxCON (T2CON, T4CON, T6CON or	450
T8CON Control)	150
TyCON (T3CON, T5CON, T7CON or	
T9CON Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	177
Reset	
Clock Source Selection	
Special Function Register Reset States	
Times	67
Reset Sequence	69
Resets	65