

Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

E·XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                            |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 40 MIPs                                                                        |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                        |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                     |
| Number of I/O              | 53                                                                             |
| Program Memory Size        | 64KB (22K x 24)                                                                |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 8K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                      |
| Data Converters            | A/D 18x10b/12b                                                                 |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 64-VFQFN Exposed Pad                                                           |
| Supplier Device Package    | 64-VQFN (9x9)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp506a-i-mr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### Pin Diagrams (Continued)



### 3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any point.

The PIC24HJXXXGPX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The PIC24HJXXXGPX06A/X08A/X10A instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC24HJXXXGPX06A/X08A/X10A is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the PIC24HJXXXGPX06A/X08A/X10A is shown in Figure 3-2.

### 3.1 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

### 3.2 Special MCU Features

The PIC24HJXXXGPX06A/X08A/X10A features a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible.

The PIC24HJXXXGPX06A/X08A/X10A supports 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.



### FIGURE 4-3: DATA MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A DEVICES WITH 8 KB

| IADLE 4- | <u>o.</u>   | JUIFU  |        |        | EGIST  |        | F      |       |             |             |              |       |       |        |       |          |       |               |
|----------|-------------|--------|--------|--------|--------|--------|--------|-------|-------------|-------------|--------------|-------|-------|--------|-------|----------|-------|---------------|
| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8       | Bit 7       | Bit 6        | Bit 5 | Bit 4 | Bit 3  | Bit 2 | Bit 1    | Bit 0 | All<br>Resets |
| OC1RS    | 0180        |        |        |        |        |        |        | Ou    | tput Compar | e 1 Second  | ary Register |       |       |        |       |          |       | xxxx          |
| OC1R     | 0182        |        |        |        |        |        |        |       | Output Co   | ompare 1 Re | egister      |       |       |        |       |          |       | xxxx          |
| OC1CON   | 0184        | —      | _      | OCSIDL | —      | —      | _      | _     | _           | _           | _            | _     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| OC2RS    | 0186        |        |        |        |        |        |        | Ou    | tput Compar | e 2 Second  | ary Register |       |       |        |       |          |       | xxxx          |
| OC2R     | 0188        |        |        |        |        |        |        |       | Output Co   | ompare 2 Re | egister      |       |       |        |       |          |       | xxxx          |
| OC2CON   | 018A        | _      | _      | OCSIDL | _      | _      | _      | _     | _           | _           | _            | _     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| OC3RS    | 018C        |        |        |        |        |        |        | Ou    | tput Compar | e 3 Second  | ary Register |       |       |        |       |          |       | xxxx          |
| OC3R     | 018E        |        |        |        |        |        |        |       | Output Co   | ompare 3 Re | egister      |       |       |        |       |          |       | xxxx          |
| OC3CON   | 0190        | _      | _      | OCSIDL | _      | _      | _      | _     | _           | _           | _            | _     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| OC4RS    | 0192        |        |        |        |        |        |        | Ou    | tput Compar | e 4 Second  | ary Register |       |       |        |       |          |       | XXXX          |
| OC4R     | 0194        |        |        |        |        |        |        |       | Output Co   | ompare 4 Re | egister      |       |       |        |       |          |       | XXXX          |
| OC4CON   | 0196        | _      | —      | OCSIDL | —      | —      | _      | _     | _           | _           | —            | —     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| OC5RS    | 0198        |        |        |        |        |        |        | Ou    | tput Compar | e 5 Second  | ary Register |       |       |        |       |          |       | xxxx          |
| OC5R     | 019A        |        |        |        |        |        |        |       | Output Co   | ompare 5 Re | egister      |       |       |        |       |          |       | xxxx          |
| OC5CON   | 019C        |        | —      | OCSIDL | —      | —      | _      | —     |             | _           | —            | —     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| OC6RS    | 019E        |        |        |        |        |        |        | Ou    | tput Compar | e 6 Second  | ary Register |       |       |        |       |          |       | xxxx          |
| OC6R     | 01A0        |        |        |        |        |        |        |       | Output Co   | ompare 6 Re | egister      |       |       |        |       |          |       | xxxx          |
| OC6CON   | 01A2        | _      | _      | OCSIDL | _      | _      | _      | _     |             | _           | _            | _     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| OC7RS    | 01A4        |        |        |        |        |        |        | Ou    | tput Compar | e 7 Second  | ary Register |       |       |        |       |          |       | xxxx          |
| OC7R     | 01A6        |        |        |        |        |        |        |       | Output Co   | ompare 7 Re | egister      |       |       |        |       |          |       | xxxx          |
| OC7CON   | 01A8        |        | —      | OCSIDL | —      | —      | _      | —     |             | _           | —            | —     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| OC8RS    | 01AA        |        |        |        |        |        |        | Ou    | tput Compar | e 8 Second  | ary Register |       |       |        |       |          |       | xxxx          |
| OC8R     | 01AC        |        |        |        |        |        |        |       | Output Co   | ompare 8 Re | egister      |       |       |        |       |          |       | xxxx          |
| OC8CON   | 01AE        | _      | _      | OCSIDL | _      | _      |        | _     |             |             | _            | _     | OCFLT | OCTSEL |       | OCM<2:0> |       | 0000          |
| 1 1      |             |        |        |        |        | 1 (-1  |        |       |             |             | <b>D</b>     |       |       |        |       |          |       |               |

### TABLE 4-8: OUTPUT COMPARE REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

# \_\_\_\_\_

### TABLE 4-12: UART2 REGISTER MAP

| SFR<br>Name | SFR<br>Addr | Bit 15   | Bit 14 | Bit 13   | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8    | Bit 7         | Bit 6   | Bit 5 | Bit 4       | Bit 3   | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|----------|--------|----------|--------|--------|--------|-------|----------|---------------|---------|-------|-------------|---------|-------|--------|-------|---------------|
| U2MODE      | 0230        | UARTEN   | —      | USIDL    | IREN   | RTSMD  | _      | UEN1  | UEN0     | WAKE          | LPBACK  | ABAUD | URXINV      | BRGH    | PDSE  | _<1:0> | STSEL | 0000          |
| U2STA       | 0232        | UTXISEL1 | UTXINV | UTXISEL0 | _      | UTXBRK | UTXEN  | UTXBF | TRMT     | URXISE        | EL<1:0> | ADDEN | RIDLE       | PERR    | FERR  | OERR   | URXDA | 0110          |
| U2TXREG     | 0234        | _        | _      | _        | _      | _      | -      |       |          |               |         | UART  | Transmit Re | egister |       |        |       | xxxx          |
| U2RXREG     | 0236        | _        | _      | _        | _      | _      | -      |       |          |               |         | UART  | Receive Re  | gister  |       |        |       | 0000          |
| U2BRG       | 0238        |          |        |          |        |        |        | Bauc  | Rate Gen | erator Presca | aler    |       |             |         |       |        |       | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

### TABLE 4-13: SPI1 REGISTER MAP

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9      | Bit 8       | Bit 7        | Bit 6    | Bit 5 | Bit 4 | Bit 3     | Bit 2    | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|---------|--------|--------|--------|------------|-------------|--------------|----------|-------|-------|-----------|----------|--------|--------|---------------|
| SPI1STAT    | 0240        | SPIEN  | _      | SPISIDL | _      | _      | —      | —          | —           | _            | SPIROV   | _     | —     | —         | —        | SPITBF | SPIRBF | 0000          |
| SPI1CON1    | 0242        | _      | _      | _       | DISSCK | DISSDO | MODE16 | SMP        | CKE         | SSEN         | CKP      | MSTEN |       | SPRE<2:0> | <b>`</b> | PPRE   | <1:0>  | 0000          |
| SPI1CON2    | 0244        | FRMEN  | SPIFSD | FRMPOL  | _      | _      | _      | _          | _           | —            | _        | _     | _     | —         | _        | FRMDLY | —      | 0000          |
| SPI1BUF     | 0248        |        |        |         |        |        |        | SPI1 Trans | smit and Re | ceive Buffer | Register |       |       |           |          |        |        | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

### TABLE 4-14: SPI2 REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8       | Bit 7        | Bit 6    | Bit 5 | Bit 4 | Bit 3     | Bit 2 | Bit 1  | Bit 0  | All<br>Resets |
|----------|-------------|--------|--------|---------|--------|--------|--------|-----------|-------------|--------------|----------|-------|-------|-----------|-------|--------|--------|---------------|
| SPI2STAT | 0260        | SPIEN  | —      | SPISIDL | _      | —      | _      | -         | _           | -            | SPIROV   | —     | _     | —         | _     | SPITBF | SPIRBF | 0000          |
| SPI2CON1 | 0262        | _      | _      | _       | DISSCK | DISSDO | MODE16 | SMP       | CKE         | SSEN         | CKP      | MSTEN |       | SPRE<2:0> |       | PPRE   | <1:0>  | 0000          |
| SPI2CON2 | 0264        | FRMEN  | SPIFSD | FRMPOL  | _      | _      | _      | _         | _           | _            | _        | _     | _     | _         | _     | FRMDLY | _      | 0000          |
| SPI2BUF  | 0268        |        |        |         |        |        |        | SPI2 Tran | smit and Re | ceive Buffer | Register |       |       |           |       |        |        | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

### REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

| R/W-0  | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| NSTDIS | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0  | R/W-0   | U-0   |
|-------|---------|---------|---------|---------|--------|---------|-------|
| —     | DIV0ERR | DMACERR | MATHERR | ADDRERR | STKERR | OSCFAIL | —     |
| bit 7 |         |         |         |         |        |         | bit 0 |

| Legend:         |                          |                               |                                      |                    |
|-----------------|--------------------------|-------------------------------|--------------------------------------|--------------------|
| R = Readable    | bit                      | W = Writable bit              | U = Unimplemented bit,               | read as '0'        |
| -n = Value at F | POR                      | '1' = Bit is set              | '0' = Bit is cleared                 | x = Bit is unknown |
|                 |                          |                               |                                      |                    |
| bit 15          | NSTDIS:                  | nterrupt Nesting Disable bit  | t                                    |                    |
|                 | 1 = Interru              | pt nesting is disabled        |                                      |                    |
|                 | 0 = Interru              | ipt nesting is enabled        |                                      |                    |
| bit 14-7        | Unimplem                 | nented: Read as '0'           |                                      |                    |
| bit 6           | DIV0ERR:                 | Arithmetic Error Status bit   |                                      |                    |
|                 | 1 = Math e               | error trap was caused by a c  | divide by zero<br>v a divide by zero |                    |
| bit 5           | DMACER                   | R: DMA Controller Error Sta   | atus bit                             |                    |
|                 | 1 = DMA c                | controller error trap has occ | urred                                |                    |
|                 | 0 = DMA c                | controller error trap has not | occurred                             |                    |
| bit 4           | MATHERF                  | R: Arithmetic Error Status bi | t                                    |                    |
|                 | 1 = Math e               | error trap has occurred       |                                      |                    |
|                 | 0 = Math e               | error trap has not occurred   |                                      |                    |
| bit 3           | ADDRER                   | R: Address Error Trap Statu   | is bit                               |                    |
|                 | 1 = Addres               | ss error trap has occurred    | a d                                  |                    |
| 1.11 O          |                          | ss error trap has not occurre | ea                                   |                    |
| bit 2           | SIKERR:                  | Stack Error Trap Status bit   |                                      |                    |
|                 | $\perp = Stack$          | error trap has occurred       |                                      |                    |
| hit 1           |                          | Chor trap has not occurred    | tue hit                              |                    |
| DIL             |                          | tor failure trap has occurred | d                                    |                    |
|                 | 1 = Oscillar0 = Oscillar | ator failure trap has occurre | urred                                |                    |
| bit 0           | Unimplem                 | nented: Read as '0'           |                                      |                    |
|                 | -                        |                               |                                      |                    |

### REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

| U-0             | R/W-0                              | R/W-0                            | R/W-0                | R/W-0            | R/W-0            | R/W-0           | R/W-0  |
|-----------------|------------------------------------|----------------------------------|----------------------|------------------|------------------|-----------------|--------|
|                 | DMA1IF                             | AD1IF                            | U1TXIF               | U1RXIF           | SPI1IF           | SPI1EIF         | T3IF   |
| bit 15          |                                    |                                  |                      |                  |                  |                 | bit 8  |
| <b></b>         |                                    |                                  |                      |                  |                  |                 |        |
| R/W-0           | R/W-0                              | R/W-0                            | R/W-0                | R/W-0            | R/W-0            | R/W-0           | R/W-0  |
| T2IF            | OC2IF                              | IC2IF                            | DMA01IF              | T1IF             | OC1IF            | IC1IF           | INT0IF |
| bit 7           |                                    |                                  |                      |                  |                  |                 | bit 0  |
| Logond          |                                    |                                  |                      |                  |                  |                 |        |
| R = Readable    | bit                                | W = Writable                     | bit                  | l I = l Inimplei | mented hit read  | d as '0'        |        |
| -n = Value at F | POR                                | '1' = Bit is se                  | t                    | '0' = Bit is cle | eared            | x = Bit is unkn | iown   |
|                 |                                    |                                  | -                    |                  |                  |                 | -      |
| bit 15          | Unimplemen                         | ted: Read as                     | 0'                   |                  |                  |                 |        |
| bit 14          | DMA1IF: DM                         | A Channel 1 D                    | ata Transfer C       | Complete Interr  | rupt Flag Status | bit             |        |
|                 | 1 = Interrupt r<br>0 = Interrupt r | request has oc<br>request has no | curred<br>t occurred |                  |                  |                 |        |
| bit 13          | AD1IF: ADC1                        | Conversion C                     | Complete Interi      | rupt Flag Statu  | is bit           |                 |        |
|                 | 1 = Interrupt r<br>0 = Interrupt r | request has oc<br>request has no | curred<br>t occurred |                  |                  |                 |        |
| bit 12          | U1TXIF: UAR                        | RT1 Transmitte                   | r Interrupt Flag     | g Status bit     |                  |                 |        |
|                 | 1 = Interrupt r                    | request has oc                   | curred               |                  |                  |                 |        |
|                 | 0 = Interrupt r                    | request has no                   | t occurred           |                  |                  |                 |        |
| DIT 11          |                                    | KI 1 Receiver I                  | nterrupt Flag S      | Status dit       |                  |                 |        |
|                 | 0 = Interrupt r                    | request has oc                   | t occurred           |                  |                  |                 |        |
| bit 10          | SPI1IF: SPI1                       | Event Interrup                   | ot Flag Status b     | oit              |                  |                 |        |
|                 | 1 = Interrupt r<br>0 = Interrupt r | request has oc<br>request has no | curred<br>t occurred |                  |                  |                 |        |
| bit 9           | SPI1EIF: SPI                       | 1 Fault Interru                  | pt Flag Status       | bit              |                  |                 |        |
|                 | 1 = Interrupt r                    | request has oc                   | curred               |                  |                  |                 |        |
| <b>h</b> :t 0   | 0 = Interrupt r                    | request has no                   | t occurred           |                  |                  |                 |        |
| DIT 8           | 1 3IF: Inmer3                      | Interrupt Flag                   | Status bit           |                  |                  |                 |        |
|                 | 0 = Interrupt r                    | request has oc                   | t occurred           |                  |                  |                 |        |
| bit 7           | T2IF: Timer2                       | Interrupt Flag                   | Status bit           |                  |                  |                 |        |
|                 | 1 = Interrupt r                    | request has oc                   | curred               |                  |                  |                 |        |
|                 |                                    | request has no                   | t occurred           |                  | 1.11             |                 |        |
| bit 6           | 1 = Interrupt r                    | ut Compare Cr                    | annel 2 Interr       | upt Flag Status  | s dit            |                 |        |
|                 | 0 = Interrupt r                    | request has oc                   | t occurred           |                  |                  |                 |        |
| bit 5           | IC2IF: Input C                     | Capture Chann                    | el 2 Interrupt I     | -lag Status bit  |                  |                 |        |
|                 | 1 = Interrupt r                    | request has oc                   | curred               |                  |                  |                 |        |
|                 | 0 = Interrupt r                    | request has no                   | t occurred           |                  |                  | - I- 14         |        |
| DIT 4           | 1 = Interrupt r                    | VIA Channel U                    |                      | Complete Inte    | rrupt Flag Statu | IS DIT          |        |
|                 | 0 = Interrupt r                    | request has no                   | t occurred           |                  |                  |                 |        |
| bit 3           | T1IF: Timer1                       | Interrupt Flag                   | Status bit           |                  |                  |                 |        |
|                 | 1 = Interrupt r                    | request has oc                   | curred               |                  |                  |                 |        |
|                 | 0 = Interrupt r                    | request has no                   | t occurred           |                  |                  |                 |        |

| REGISTER 7-6: | IFS1: INTERRUPT FLAG STATUS REGISTER 1 |
|---------------|----------------------------------------|
|---------------|----------------------------------------|

| R/W-0           | R/W-0                              | R/W-0                              | R/W-0                   | R/W-0            | R/W-0            | R/W-0           | R/W-0   |
|-----------------|------------------------------------|------------------------------------|-------------------------|------------------|------------------|-----------------|---------|
| U2TXIF          | U2RXIF                             | INT2IF                             | T5IF                    | T4IF             | OC4IF            | OC3IF           | DMA21IF |
| bit 15          |                                    |                                    |                         |                  |                  |                 | bit 8   |
| <b></b>         |                                    |                                    |                         |                  |                  |                 |         |
| R/W-0           | R/W-0                              | R/W-0                              | R/W-0                   | R/W-0            | U-0              | R/W-0           | R/W-0   |
| IC8IF           | IC7IF                              | AD2IF                              | INT1IF                  | CNIF             | —                | MI2C1IF         | SI2C1IF |
| bit 7           |                                    |                                    |                         |                  |                  |                 | bit 0   |
| Legend:         |                                    |                                    |                         |                  |                  |                 |         |
| R = Readable    | bit                                | W = Writable                       | bit                     | U = Unimple      | mented bit read  | 1 as '0'        |         |
| -n = Value at F | POR                                | '1' = Bit is set                   |                         | '0' = Bit is cle | eared            | x = Bit is unkr | nown    |
|                 |                                    |                                    |                         |                  |                  |                 |         |
| bit 15          | U2TXIF: UAF                        | RT2 Transmitter                    | Interrupt Fla           | g Status bit     |                  |                 |         |
|                 | 1 = Interrupt i                    | request has occ                    | curred                  |                  |                  |                 |         |
|                 | 0 = Interrupt i                    | request has not                    | occurred                |                  |                  |                 |         |
| bit 14          | U2RXIF: UAF                        | RT2 Receiver Ir                    | nterrupt Flag           | Status bit       |                  |                 |         |
|                 | 1 = Interrupt i                    | request has occ<br>request has not | currea<br>t occurred    |                  |                  |                 |         |
| bit 13          | INT2IF: Exter                      | nal Interrupt 2                    | Flag Status b           | it               |                  |                 |         |
|                 | 1 = Interrupt I                    | request has occ                    | curred                  |                  |                  |                 |         |
|                 | 0 = Interrupt I                    | request has not                    | toccurred               |                  |                  |                 |         |
| bit 12          | T5IF: Timer5                       | Interrupt Flag S                   | Status bit              |                  |                  |                 |         |
|                 | 1 = Interrupt I                    | request has occ<br>request has not | curred                  |                  |                  |                 |         |
| bit 11          | T4IF: Timer4                       | Interrupt Flag S                   | Status bit              |                  |                  |                 |         |
|                 | 1 = Interrupt I                    | request has occ                    | curred                  |                  |                  |                 |         |
|                 | 0 = Interrupt i                    | request has not                    | occurred                |                  |                  |                 |         |
| bit 10          | OC4IF: Outpu                       | ut Compare Ch                      | annel 4 Interr          | upt Flag Status  | s bit            |                 |         |
|                 | 1 = Interrupt i<br>0 = Interrupt i | request has occ<br>request has not | curred<br>t occurred    |                  |                  |                 |         |
| bit 9           | OC3IF: Outpu                       | ut Compare Ch                      | annel 3 Interr          | upt Flag Statu   | s bit            |                 |         |
|                 | 1 = Interrupt I                    | request has occ                    | curred                  |                  |                  |                 |         |
| <b>h</b> # 0    |                                    | request has not                    | t occurred              | Complete Inte    | must Elea Otati  | a hit           |         |
| DIL 8           | 1 = Interrunt u                    | via Unannei 2 L<br>request has occ |                         | Complete inte    | rrupt Flag Statu | IS DIL          |         |
|                 | 0 = Interrupt i                    | request has not                    | toccurred               |                  |                  |                 |         |
| bit 7           | IC8IF: Input C                     | Capture Channe                     | el 8 Interrupt          | Flag Status bit  |                  |                 |         |
|                 | 1 = Interrupt i                    | request has occ                    | curred                  |                  |                  |                 |         |
| hit 6           |                                    | Capture Chappe                     | occurred                | Elaa Status bit  |                  |                 |         |
| DIL O           | 1 = Interrupt i                    | request has occ                    | curred                  | riay Status Dit  |                  |                 |         |
|                 | 0 = Interrupt i                    | request has not                    | toccurred               |                  |                  |                 |         |
| bit 5           | AD2IF: ADC2                        | 2 Conversion C                     | omplete Inter           | rupt Flag Statu  | ıs bit           |                 |         |
|                 | 1 = Interrupt I                    | request has occ                    | curred                  |                  |                  |                 |         |
| hit 4           |                                    | request has not                    |                         | :+               |                  |                 |         |
| UIL 4           |                                    | request has one                    | riay status D<br>curred | IL               |                  |                 |         |
|                 | 0 = Interrupt i                    | request has not                    | occurred                |                  |                  |                 |         |
|                 |                                    |                                    |                         |                  |                  |                 |         |

### 9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, PIC24HJXXXGPX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

### 9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 21.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

### 9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
  - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
    - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
    - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

### 9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

If an oscillator failure occurs, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

<sup>© 2009-2012</sup> Microchip Technology Inc.

| NEOIOTEN.     |                                       |                                     |             |                   |                  |                 |                      |
|---------------|---------------------------------------|-------------------------------------|-------------|-------------------|------------------|-----------------|----------------------|
| R/W-0         | R/W-0                                 | R/W-0                               | R/W-0       | R/W-0             | U-0              | U-0             | U-0                  |
| T5MD          | T4MD                                  | T3MD                                | T2MD        | T1MD              | <u> </u>         | —               |                      |
| bit 15        |                                       |                                     |             |                   |                  |                 | bit 8                |
|               |                                       |                                     |             |                   |                  |                 |                      |
| R/W-0         | R/W-0                                 | R/W-0                               | R/W-0       | R/W-0             | R/W-0            | R/W-0           | R/W-0                |
| I2C1MD        | U2MD                                  | U1MD                                | SPI2MD      | SPI1MD            | C2MD             | C1MD            | AD1MD <sup>(1)</sup> |
| bit 7         |                                       |                                     |             |                   |                  |                 | bit 0                |
| r             |                                       |                                     |             |                   |                  |                 |                      |
| Legend:       |                                       |                                     |             |                   |                  |                 |                      |
| R = Readable  | e bit                                 | W = Writable I                      | oit         | U = Unimplen      | nented bit, read | l as '0'        |                      |
| -n = Value at | POR                                   | '1' = Bit is set                    |             | '0' = Bit is clea | ared             | x = Bit is unkr | IOWN                 |
|               |                                       |                                     |             |                   |                  |                 |                      |
| bit 15        | T5MD: Timer                           | 5 Module Disab                      | le bit      |                   |                  |                 |                      |
|               | 1 = 1  mer5 m<br>0 = 1  mer5 m        | odule is disable<br>odule is enable | d<br>d      |                   |                  |                 |                      |
| hit 14        | T4MD. Timer                           | 1 Module Disah                      | le hit      |                   |                  |                 |                      |
| bit 14        | 1 = Timer4 mc                         | odule is disable                    | ed          |                   |                  |                 |                      |
|               | 0 = Timer4 mo                         | odule is enable                     | d           |                   |                  |                 |                      |
| bit 13        | T3MD: Timer3                          | 3 Module Disab                      | le bit      |                   |                  |                 |                      |
|               | 1 = Timer3 mo                         | odule is disable                    | ed          |                   |                  |                 |                      |
|               | 0 = Timer3 mo                         | odule is enable                     | d           |                   |                  |                 |                      |
| bit 12        | T2MD: Timer2                          | 2 Module Disab                      | le bit      |                   |                  |                 |                      |
|               | 1 = 1  mer 2  me<br>0 = 1  mer 2  me  | odule is disable<br>odule is enable | d<br>d      |                   |                  |                 |                      |
| bit 11        | T1MD. Timer1                          | I Module Disah                      | u<br>Ie hit |                   |                  |                 |                      |
|               | 1 = Timer1 mc                         | odule is disable                    | ed          |                   |                  |                 |                      |
|               | 0 = Timer1 mc                         | odule is enable                     | d           |                   |                  |                 |                      |
| bit 10-8      | Unimplement                           | ted: Read as 'd                     | )'          |                   |                  |                 |                      |
| bit 7         | <b>I2C1MD:</b> I <sup>2</sup> C1      | Module Disab                        | le bit      |                   |                  |                 |                      |
|               | $1 = I^2C1 \mod 0$ $0 = I^2C1 \mod 0$ | ule is disabled<br>ule is enabled   |             |                   |                  |                 |                      |
| bit 6         | U2MD: UART                            | 2 Module Disa                       | ble bit     |                   |                  |                 |                      |
|               | 1 = UART2 m                           | odule is disable                    | ed          |                   |                  |                 |                      |
|               | 0 = UART2 m                           | odule is enable                     | ed          |                   |                  |                 |                      |
| bit 5         | U1MD: UART                            | 1 Module Disa                       | ble bit     |                   |                  |                 |                      |
|               | 1 = UART1 m<br>0 = UART1 m            | odule is disable<br>odule is enable | ed<br>ed    |                   |                  |                 |                      |
| bit 4         | SPI2MD: SPI2                          | 2 Module Disat                      | ole bit     |                   |                  |                 |                      |
|               | 1 = SPI2 mod<br>0 = SPI2 mod          | ule is disabled<br>ule is enabled   |             |                   |                  |                 |                      |
| bit 3         | SPI1MD: SPI                           | 1 Module Disab                      | ole bit     |                   |                  |                 |                      |
|               | 1 = SPI1 mod                          | ule is disabled                     |             |                   |                  |                 |                      |
|               | 0 = SPI1 mod                          | ule is enabled                      |             |                   |                  |                 |                      |
| bit 2         | C2MD: ECAN                            | 2 Module Disa                       | ble bit     |                   |                  |                 |                      |
|               | 1 = ECAN2 m<br>0 = ECAN2 m            | odule is disable<br>odule is enable | ed<br>ed    |                   |                  |                 |                      |
|               |                                       |                                     |             |                   |                  |                 |                      |

### REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

**Note 1:** PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

| REGISTER      |                                |                                      |                              |                  |                  | GIJIER Z        |       |
|---------------|--------------------------------|--------------------------------------|------------------------------|------------------|------------------|-----------------|-------|
| R/W-0         | R/W-0                          | R/W-0                                | R/W-0                        | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
| IC8MD         | IC7MD                          | IC6MD                                | IC5MD                        | IC4MD            | IC3MD            | IC2MD           | IC1MD |
| bit 15        |                                |                                      |                              |                  |                  |                 | bit 8 |
| DAMO          | DAMA                           | DAMA                                 | DAALO                        |                  | DAMA             | DAALO           | DAALO |
| R/W-U         | R/W-0                          | R/W-U                                | R/W-U                        | R/W-0            | R/W-U            | R/W-U           | R/W-U |
| DC8IVID       | OC/MD                          | OC6MD                                | OC5MD                        | OC4MD            | OC3IVID          | OC2MD           |       |
|               |                                |                                      |                              |                  |                  |                 | DILU  |
| Legend:       |                                |                                      |                              |                  |                  |                 |       |
| R = Readable  | e bit                          | W = Writable I                       | oit                          | U = Unimpler     | nented bit, read | l as '0'        |       |
| -n = Value at | POR                            | '1' = Bit is set                     |                              | '0' = Bit is cle | ared             | x = Bit is unkr | nown  |
|               |                                |                                      |                              |                  |                  |                 |       |
| bit 15        | IC8MD: Input                   | Capture 8 Mod                        | lule Disable bi              | t                |                  |                 |       |
|               | 1 = Input Cap                  | ture 8 module i                      | s disabled                   |                  |                  |                 |       |
| bit 11        |                                | oture 8 module i                     | s enabled<br>Iule Dischle hi |                  |                  |                 |       |
| DIL 14        | 1 = Input Can                  | ture 7 module i                      | s disabled                   | L                |                  |                 |       |
|               | 0 = Input Cap                  | oture 7 module i                     | s enabled                    |                  |                  |                 |       |
| bit 13        | IC6MD: Input                   | Capture 6 Mod                        | lule Disable bi              | t                |                  |                 |       |
|               | 1 = Input Cap                  | ture 6 module i                      | s disabled                   |                  |                  |                 |       |
|               | 0 = Input Cap                  | ture 6 module i                      | s enabled                    |                  |                  |                 |       |
| bit 12        | IC5MD: Input                   | Capture 5 Mod                        | lule Disable bi              | t                |                  |                 |       |
|               | 0 = Input Cap                  | oture 5 module i                     | s enabled                    |                  |                  |                 |       |
| bit 11        | IC4MD: Input                   | Capture 4 Mod                        | lule Disable bi              | t                |                  |                 |       |
|               | 1 = Input Cap                  | ture 4 module i                      | s disabled                   |                  |                  |                 |       |
|               | 0 = Input Cap                  | ture 4 module i                      | s enabled                    |                  |                  |                 |       |
| bit 10        | IC3MD: Input                   | Capture 3 Mod                        | lule Disable bi              | t                |                  |                 |       |
|               | 1 = Input Cap<br>0 = Input Cap | iture 3 module i<br>iture 3 module i | s enabled                    |                  |                  |                 |       |
| bit 9         | IC2MD: Input                   | Capture 2 Mod                        | lule Disable bi              | t                |                  |                 |       |
|               | 1 = Input Cap                  | oture 2 module i                     | s disabled                   |                  |                  |                 |       |
|               | 0 = Input Cap                  | ture 2 module i                      | s enabled                    |                  |                  |                 |       |
| bit 8         | IC1MD: Input                   | Capture 1 Mod                        | lule Disable bi              | t                |                  |                 |       |
|               | 1 = Input Cap<br>0 = Input Cap | oture 1 module i<br>oture 1 module i | s disabled<br>s enabled      |                  |                  |                 |       |
| bit 7         | OC8MD: Out                     | put Compare 8                        | Module Disab                 | le bit           |                  |                 |       |
|               | 1 = Output Co                  | ompare 8 modu                        | le is disabled               |                  |                  |                 |       |
|               | 0 = Output Co                  | ompare 8 modu                        | le is enabled                |                  |                  |                 |       |
| bit 6         | OC7MD: Out                     | put Compare 4                        | Module Disab                 | le bit           |                  |                 |       |
|               | 1 = Output Co                  | ompare 7 modu<br>ompare 7 modu       | le is disabled               |                  |                  |                 |       |
| bit 5         | OC6MD: Out                     | out Compare 6                        | Module Disab                 | le bit           |                  |                 |       |
| Site          | 1 = Output Co                  | ompare 6 modu                        | le is disabled               |                  |                  |                 |       |
|               | 0 = Output Co                  | ompare 6 modu                        | le is enabled                |                  |                  |                 |       |
| bit 4         | OC5MD: Out                     | put Compare 5                        | Module Disab                 | le bit           |                  |                 |       |
|               | 1 = Output Co                  | ompare 5 modu                        | le is disabled               |                  |                  |                 |       |
|               |                                | Sinpare Siniouu                      | IC IS CHADIEU                |                  |                  |                 |       |

### REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

### 13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2. For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

| Note: | For 32-bit operation, T3CON, T5CON,         |
|-------|---------------------------------------------|
|       | T7CON and T9CON control bits are            |
|       | ignored. Only T2CON, T4CON, T6CON           |
|       | and T8CON control bits are used for setup   |
|       | and control. Timer2, Timer4, Timer6 and     |
|       | Timer8 clock and gate inputs are utilized   |
|       | for the 32-bit timer modules, but an inter- |
|       | rupt is generated with the Timer3, Timer5,  |
|       | Ttimer7 and Timer9 interrupt flags.         |

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

### REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

| R/W-0              | U-0 | R/W-0                | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------------------|-----|----------------------|-----|-----|-----|-----|-------|
| TON <sup>(1)</sup> |     | TSIDL <sup>(2)</sup> | —   | -   | —   | —   | _     |
| bit 15             |     |                      |     |     |     |     | bit 8 |
|                    |     |                      |     |     |     |     |       |

| U-0   | R/W-0                | R/W-0 | R/W-0    | U-0 | U-0 | R/W-0                | U-0   |
|-------|----------------------|-------|----------|-----|-----|----------------------|-------|
| —     | TGATE <sup>(1)</sup> | TCKPS | <1:0>(1) | —   | —   | TCS <sup>(1,3)</sup> | _     |
| bit 7 |                      |       |          |     |     |                      | bit 0 |

| Legend:           |                                                            |                                                           |                                   |                                |
|-------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|--------------------------------|
| R = Readabl       | e bit                                                      | W = Writable bit                                          | U = Unimplemented bit, read       | 1 as '0'                       |
| -n = Value at POR |                                                            | '1' = Bit is set                                          | '0' = Bit is cleared              | x = Bit is unknown             |
|                   |                                                            |                                                           |                                   |                                |
| bit 15            | TON: Timery                                                | On bit <sup>(1)</sup>                                     |                                   |                                |
|                   | 1 = Starts 16-                                             | bit Timery                                                |                                   |                                |
|                   | 0 = Stops 16-                                              | bit Timery                                                |                                   |                                |
| bit 14            | Unimplemen                                                 | ited: Read as '0'                                         |                                   |                                |
| bit 13            | TSIDL: Stop                                                | in Idle Mode bit <sup>(2)</sup>                           |                                   |                                |
|                   | 1 = Discontin<br>0 = Continue                              | ue module operation when o<br>module operation in Idle mo | levice enters Idle mode<br>de     |                                |
| bit 12-7          | Unimplemen                                                 | ted: Read as '0'                                          |                                   |                                |
| bit 6             | TGATE: Time                                                | ery Gated Time Accumulation                               | n Enable bit <sup>(1)</sup>       |                                |
|                   | When TCS =                                                 | <u>1:</u>                                                 |                                   |                                |
|                   | This bit is ign                                            | ored.                                                     |                                   |                                |
|                   | $\frac{\text{VVnen } 1\text{ CS} =}{1 = \text{Gated tim}}$ | <u>0:</u><br>he accumulation enabled                      |                                   |                                |
|                   | 0 = Gated tim                                              | ne accumulation disabled                                  |                                   |                                |
| bit 5-4           | TCKPS<1:0>                                                 | : Timer3 Input Clock Presca                               | le Select bits <sup>(1)</sup>     |                                |
|                   | 11 <b>= 1:256</b>                                          |                                                           |                                   |                                |
|                   | 10 <b>= 1:64</b>                                           |                                                           |                                   |                                |
|                   | 01 = 1:8<br>00 = 1:1                                       |                                                           |                                   |                                |
| bit 3-2           | Unimplemen                                                 | ted: Read as '0'                                          |                                   |                                |
| bit 1             | TCS: Timerv                                                | Clock Source Select bit <sup>(1,3)</sup>                  |                                   |                                |
| ~                 | 1 = External of                                            | clock from pin TvCK (on the                               | risina edae)                      |                                |
|                   | 0 = Internal c                                             | lock (Fcy)                                                |                                   |                                |
| bit 0             | Unimplemen                                                 | ted: Read as '0'                                          |                                   |                                |
| Note 1: W         | /hen 32-bit opera<br>nctions are set tl                    | tion is enabled (T2CON<3><br>hrough T2CON.                | = 1), these bits have no effect ( | on Timery operation; all timer |

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

### 15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user

TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

| Note: | See Section 13. "Output Compare"      |
|-------|---------------------------------------|
|       | (DS70209) in the "dsPIC33F/PIC24H     |
|       | Family Reference Manual" for OCxR and |
|       | OCxRS register restrictions.          |

| OCM<2:0> | Mode                         | OCx Pin Initial State                                                   | OCx Interrupt Generation         |
|----------|------------------------------|-------------------------------------------------------------------------|----------------------------------|
| 000      | Module Disabled              | Controlled by GPIO register                                             | —                                |
| 001      | Active-Low One-Shot          | 0                                                                       | OCx rising edge                  |
| 010      | Active-High One-Shot         | 1                                                                       | OCx falling edge                 |
| 011      | Toggle                       | Current output is maintained                                            | OCx rising and falling edge      |
| 100      | Delayed One-Shot             | 0                                                                       | OCx falling edge                 |
| 101      | Continuous Pulse             | 0                                                                       | OCx falling edge                 |
| 110      | PWM without Fault Protection | ʻ0', if OCxR is zero<br>ʻ1', if OCxR is non-zero                        | No interrupt                     |
| 111      | PWM with Fault Protection    | <ul><li>'0', if OCxR is zero</li><li>'1', if OCxR is non-zero</li></ul> | OCFA falling edge for OC1 to OC4 |

### FIGURE 15-2: OUTPUT COMPARE OPERATION



### **19.3 Modes of Operation**

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

### 19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers.

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

### 19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user application switches to Disable mode within this 11-bit period, the transmission is then aborted and the corresponding TXABT bit is set and the TXREQ bit is cleared.

### 19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

### 19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

### 19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

### 19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

| U-0          | U-0             | U-0               | U-0             | U-0              | U-0              | U-0                | U-0   |
|--------------|-----------------|-------------------|-----------------|------------------|------------------|--------------------|-------|
| _            | —               | _                 | _               | —                | —                | _                  | —     |
| bit 15       |                 |                   |                 |                  |                  |                    | bit 8 |
|              |                 |                   |                 |                  |                  |                    |       |
| R/W-0        | R/W-0           | R/W-0             | U-0             | R/W-0            | R/W-0            | R/W-0              | R/W-0 |
| IVRIE        | WAKIE           | ERRIE             |                 | FIFOIE           | RBOVIE           | RBIE               | TBIE  |
| bit 7        |                 |                   |                 |                  |                  |                    | bit 0 |
| Legend:      |                 |                   |                 |                  |                  |                    |       |
| R = Readab   | le bit          | W = Writable      | bit             | U = Unimpler     | mented bit, read | l as '0'           |       |
| -n = Value a | t POR           | '1' = Bit is set  |                 | '0' = Bit is cle | ared             | x = Bit is unknown |       |
|              |                 |                   |                 |                  |                  |                    |       |
| bit 15-8     | Unimplemen      | ted: Read as '    | 0'              |                  |                  |                    |       |
| bit 7        | IVRIE: Invalio  | Message Inte      | rrupt Enable b  | bit              |                  |                    |       |
|              | 1 = Interrupt   | request enable    |                 |                  |                  |                    |       |
| bit 6        |                 | Make up Activi    | tv Intorrunt Er | ablo bit         |                  |                    |       |
|              | 1 = Interrupt   | request enable    | d niterrupt Er  |                  |                  |                    |       |
|              | 0 = Interrupt i | request not ena   | abled           |                  |                  |                    |       |
| bit 5        | ERRIE: Error    | Interrupt Enab    | le bit          |                  |                  |                    |       |
|              | 1 = Interrupt   | request enable    | d               |                  |                  |                    |       |
|              | 0 = Interrupt   | request not ena   | abled           |                  |                  |                    |       |
| bit 4        | Unimplemen      | ted: Read as '    | 0'              |                  |                  |                    |       |
| bit 3        | FIFOIE: FIFC    | Almost Full In    | terrupt Enable  | e bit            |                  |                    |       |
|              | 1 = Interrupt I | request enable    | u<br>abled      |                  |                  |                    |       |
| bit 2        | RBOVIE: RX      | Buffer Overflov   | v Interrupt En  | able bit         |                  |                    |       |
|              | 1 = Interrupt   | request enable    | d               |                  |                  |                    |       |
|              | 0 = Interrupt   | request not ena   | abled           |                  |                  |                    |       |
| bit 1        | RBIE: RX Bu     | ffer Interrupt Er | hable bit       |                  |                  |                    |       |
|              | 1 = Interrupt i | request enable    | d<br>bled       |                  |                  |                    |       |
| bit 0        |                 | fer Interrunt En  | ahle hit        |                  |                  |                    |       |
|              | 1 = Interrupt   | request enable    | d               |                  |                  |                    |       |
|              | 0 = Interrupt i | request not ena   | abled           |                  |                  |                    |       |

### **REGISTER 19-7:** CIINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER

### TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

| AC CHARACTERISTICS   |                                          |                                             | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |     |     |     |  |
|----------------------|------------------------------------------|---------------------------------------------|-------------------------------------------------------|-----|-----|-----|--|
| Maximum<br>Data Rate | Master<br>Transmit Only<br>(Half-Duplex) | Master<br>Transmit/Receive<br>(Full-Duplex) | Slave<br>Transmit/Receive<br>(Full-Duplex)            | CKE | СКР | SMP |  |
| 15 MHz               | Table 24-29                              | —                                           | —                                                     | 0,1 | 0,1 | 0,1 |  |
| 10 MHz               | —                                        | Table 24-30                                 | —                                                     | 1   | 0,1 | 1   |  |
| 10 MHz               | —                                        | Table 24-31                                 | —                                                     | 0   | 0,1 | 1   |  |
| 15 MHz               | —                                        | —                                           | Table 24-32                                           | 1   | 0   | 0   |  |
| 11 MHz               | —                                        | —                                           | Table 24-33                                           | 1   | 1   | 0   |  |
| 15 MHz               | _                                        | _                                           | Table 24-34                                           | 0   | 1   | 0   |  |
| 11 MHz               | _                                        | _                                           | Table 24-35                                           | 0   | 0   | 0   |  |

### FIGURE 24-9: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS



# FIGURE 24-13: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS



## TABLE 24-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING<br/>REQUIREMENTS

| AC CHARACTERISTICS |                       |                                                              | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                    |     |       |                                      |
|--------------------|-----------------------|--------------------------------------------------------------|-------------------------------------------------------|--------------------|-----|-------|--------------------------------------|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                                | Min                                                   | Тур <sup>(2)</sup> | Max | Units | Conditions                           |
| SP70               | TscP                  | Maximum SCK Input Frequency                                  | —                                                     | _                  | 15  | MHz   | See Note 3                           |
| SP72               | TscF                  | SCKx Input Fall Time                                         | —                                                     |                    |     | ns    | See parameter DO32 and <b>Note 4</b> |
| SP73               | TscR                  | SCKx Input Rise Time                                         | —                                                     |                    |     | ns    | See parameter DO31 and <b>Note 4</b> |
| SP30               | TdoF                  | SDOx Data Output Fall Time                                   | —                                                     |                    |     | ns    | See parameter DO32 and <b>Note 4</b> |
| SP31               | TdoR                  | SDOx Data Output Rise Time                                   | —                                                     |                    | _   | ns    | See parameter DO31 and <b>Note 4</b> |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge                    | —                                                     | 6                  | 20  | ns    | _                                    |
| SP36               | TdoV2scH,<br>TdoV2scL | SDOx Data Output Setup to<br>First SCKx Edge                 | 30                                                    | _                  | _   | ns    | —                                    |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge                   | 30                                                    | _                  | _   | ns    | —                                    |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input<br>to SCKx Edge                 | 30                                                    |                    | -   | ns    | _                                    |
| SP50               | TssL2scH,<br>TssL2scL | $\overline{SSx} \downarrow$ to SCKx $\uparrow$ or SCKx Input | 120                                                   |                    |     | ns    | _                                    |
| SP51               | TssH2doZ              | SSx ↑ to SDOx Output<br>High-Impedance <sup>(4)</sup>        | 10                                                    | —                  | 50  | ns    | —                                    |
| SP52               | TscH2ssH<br>TscL2ssH  | SSx after SCKx Edge                                          | 1.5 TCY + 40                                          | _                  | _   | ns    | See Note 4                           |

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

**3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

**4:** Assumes 50 pF load on all SPIx pins.

### 25.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between  $-40^{\circ}$ C to  $+150^{\circ}$ C are identical to those shown in **Section 24.0** "**Electrical Characteristics**" for operation between  $-40^{\circ}$ C to  $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 24.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

### Absolute Maximum Ratings

### (See Note 1)

| Ambient temperature under bias <sup>(4)</sup>                                  | 40°C to +150°C        |
|--------------------------------------------------------------------------------|-----------------------|
| Storage temperature                                                            | 65°C to +160°C        |
| Voltage on VDD with respect to Vss                                             | -0.3V to +4.0V        |
| Voltage on any pin that is not 5V tolerant with respect to Vss <sup>(5)</sup>  | -0.3V to (VDD + 0.3V) |
| Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(5)}$     | 0.3V to (VDD + 0.3V)  |
| Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0 V^{(5)}$ | 0.3V to 5.6V          |
| Voltage on VCAP with respect to Vss                                            | 2.25V to 2.75V        |
| Maximum current out of Vss pin                                                 | 60 mA                 |
| Maximum current into VDD pin <sup>(2)</sup>                                    | 60 mA                 |
| Maximum junction temperature                                                   | +155°C                |
| Maximum current sourced/sunk by any 2x I/O pin <sup>(3)</sup>                  | 2 mA                  |
| Maximum current sourced/sunk by any 4x I/O pin <sup>(3)</sup>                  | 4 mA                  |
| Maximum current sourced/sunk by any 8x I/O pin <sup>(3)</sup>                  | 8 mA                  |
| Maximum current sunk by all ports combined                                     | 10 mA                 |
| Maximum current sourced by all ports combined <sup>(2)</sup>                   | 10 mA                 |

**Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
- **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins.
- 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
- 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.