

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp506a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

PIC24H Product Families		2
2.0 Guidelines for Getting Started with 16-Bit Mid	crocontrollers	19
4.0 Memory Organization		29
5.0 Flash Program Memory		59
6.0 Reset		65
7.0 Interrupt Controller		69
8.0 Direct Memory Access (DMA)		113
9.0 Oscillator Configuration		123
10.0 Power-Saving Features		133
11.0 I/O Ports		141
12.0 Timer1		145
16.0 Serial Peripheral Interface (SPI)		159
17.0 Inter-Integrated Circuit [™] (I ² C [™])		165
	er (UART)	
19.0 Enhanced CAN (ECAN™) Module		179
	С)	
21.0 Special Features		221
22.0 Instruction Set Summary		229
23.0 Development Support		237
24.0 Electrical Characteristics		241
25.0 High Temperature Electrical Characteristics .		287
26.0 DC and AC Device Characteristics Graphs		297
Appendix A: Migrating from PIC24HJXXXGPX06/X	08/X10 Devices to PIC24HJXXXGPX06A/X08A/X10A Devices	311
Appendix B: Revision History		312
Index		317
The Microchip Web Site		321
Customer Change Notification Service		321
Customer Support		321
Reader Response		322
Product Identification System		323

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

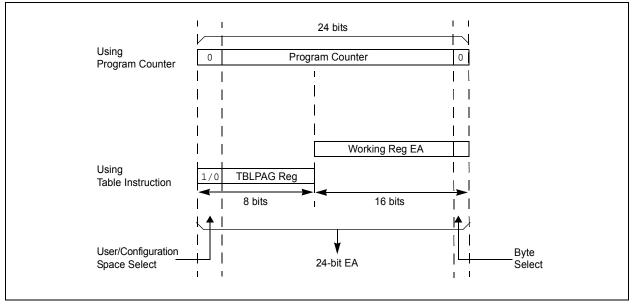
The PIC24HJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	OR	'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as	0'				
bit 14	DMA1IF: DM	A Channel 1 D	ata Transfer C	Complete Interr	rupt Flag Status	bit	
		request has oc					
bit 13		request has no I Conversion C		unt Elog Statu	o hit		
DIL 13		request has oc	•	upi riay Sialu			
		request has no					
bit 12	U1TXIF: UAF	RT1 Transmitte	r Interrupt Flag	g Status bit			
		request has oc					
		request has no					
bit 11		RT1 Receiver I request has oc		Status Dit			
		request has oc					
bit 10	-	Event Interrup		bit			
		request has oc					
		request has no					
bit 9		1 Fault Interru	•	bit			
		request has oc request has no					
bit 8		Interrupt Flag					
		request has oc					
	-	request has no					
bit 7		Interrupt Flag					
		request has oc request has no					
bit 6		ut Compare Ch		upt Flag Status	s bit		
		request has oc		-p			
	0 = Interrupt i	request has no	t occurred				
bit 5	-	Capture Chann	•	-lag Status bit			
		request has oc request has no					
bit 4	-	-		Complete Inte	rrupt Flag Statu	ıs bit	
		request has oc					
		request has no					
bit 3		Interrupt Flag					
		request has oc					
	0 = interrupt i	request has no	coccurred				

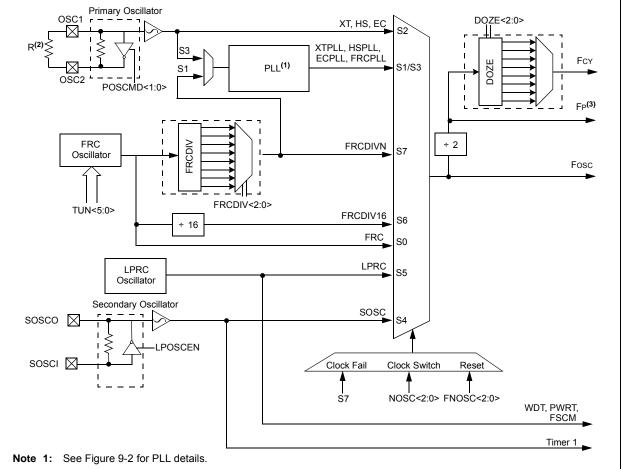
REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF
bit 7		10011	Different	0.11	O Hour		bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	TEIE. Timore	Interrupt Flag	Status bit				
DIL 15		request has oc					
		request has not					
bit 14	DMA4IF: DM	A Channel 4 D	ata Transfer C	Complete Interr	rupt Flag Status	bit	
		request has occ					
bit 13	•	request has not ited: Read as '					
bit 12	•	ut Compare Ch		unt Elan Status	e hit		
	•	request has oc		upi i lag Status	5 01		
		request has not					
bit 11	OC7IF: Output	ut Compare Ch	annel 7 Interr	upt Flag Status	s bit		
		request has oco request has not					
bit 10	OC6IF: Output	ut Compare Ch	annel 6 Interr	upt Flag Status	s bit		
		request has oco request has not					
bit 9	OC5IF: Output	ut Compare Ch	annel 5 Interr	upt Flag Status	s bit		
		request has oc					
h :+ 0	•	request has not		The Otative hit			
bit 8	-	Capture Channe request has oce		-lag Status bit			
	•	request has not					
bit 7	IC5IF: Input (Capture Channe	el 5 Interrupt I	-lag Status bit			
		request has oc					
	•	request has not					
bit 6		Capture Channe		-lag Status bit			
		request has oco request has not					
bit 5	IC3IF: Input C	Capture Channe	el 3 Interrupt I	-lag Status bit			
		request has oc					
bit 4	-	request has not		amplata Intorr	unt Flog Status	hit	
bit 4		request has oc			rupt Flag Status	UIL	
		request has not					
bit 3	•	I Event Interrup		bit			
		request has oc					
	0 = Interrupt	request has not	occurred				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T6IP<2:0>		—			
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—				OC8IP<2:0>	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 1 <i>5</i>	l inima la vere	nted. Deed at f	<u>`</u>				
bit 15	-	nted: Read as '					
bit 14-12		Timer6 Interrupt	•				
	111 = Intern	upt is priority 7 (I	nignest priorit	y interrupt)			
	•						
	•						
		upt is priority 1	ablad				
L:1 11		upt source is dis					
bit 11	-	nted: Read as '					
bit 10-8		D>: DMA Channe		•	e interrupt Prio	ity bits	
	•	upt is priority 7 (I	lignest phone	y interrupt)			
	•						
	•						
		upt is priority 1	ablad				
		upt source is dis					
bit 7-3	-	nted: Read as '					
bit 2-0		: Output Compa		-	ity bits		
	111 = Interru •	upt is priority 7 (I	nignest priorit	y interrupt)			
	•						
	•						
		upt is priority 1 upt source is dis					

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

9.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) of the "dsPIC33F/dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJXXXGPX06A/X08A/X10A oscillator system provides:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

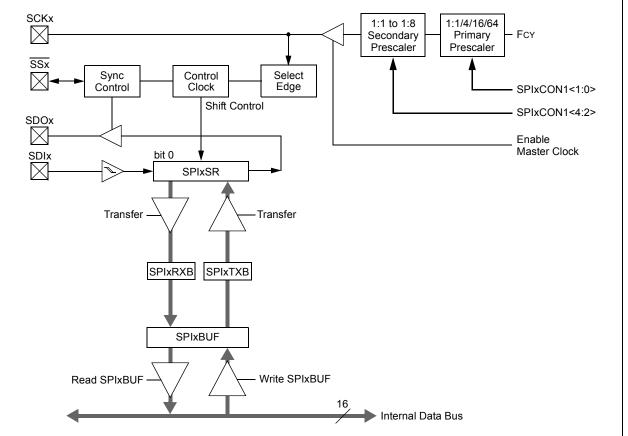
A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24HJXXXGPX06A/X08A/X10A OSCILLATOR SYSTEM DIAGRAM

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 MΩ must be connected.
- **3:** The term, FP refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU. Throughout this document FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used in any ratio other than 1:1, which is the default.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 18. "Serial Peripheral Interface (SPI)" (DS70206), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546061

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*, Section 21. *"Enhanced Controller Area Network (ECAN™)"* (DS70185), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJXXXGPX06A/X08A/X10A devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- 3 full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation

- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

The CAN module transmits various types of frames which include data messages, remote transmission requests and as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID).

- Extended Data Frame: An extended data frame is similar to a standard data frame but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

REGISTER 19-24: CIRXOVF1: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF15:RXOVF0:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-25: CIRXOVF2: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXOVF31:RXOVF16: Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-29: CITRBnDLC: ECAN™ MODULE BUFFER n DATA LENGTH CONTROL

(n = 0, 1, ..., 31)

	(11 – 🖣	, .,,,					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		EID<	:5:0>			RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	RB0		DLC	2<3:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown			
bit 15-10	EID<5:0>: E	xtended Identi	fier bits				
bit 9	RTR: Remote	e Transmission	Request bit				
	1 = Message 0 = Normal n	will request re ressage	mote transmi	ssion			
bit 8	RB1: Reserv	ed Bit 1					

	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.

bit 3-0 DLC<3:0>: Data Length Code bits

REGISTER 19-30: CiTRBnDm: ECANTM MODULE BUFFER n DATA FIELD BYTE m $(n = 0, 1, ..., 31; m = 0, 1, ..., 7)^{(1)}$

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
TRBnDm<7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRnDm<7:0>: Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

20.6 ADC Control Registers

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2)

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	ADDMABM		AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

Legend: HC = Cleared by hardware		HS = Set by hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	ADON: ADC Operating Mode bit
	1 = ADC module is operating
	0 = ADC module is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer
	 DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-Bit or 12-Bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Reserved
	10 = Reserved
	01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)
	00 = Integer (DOUT = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	111 = Internal counter ends sampling and starts conversion (auto-convert)110 = Reserved
	100 - Reserved
	100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion
	011 = Reserved 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion
	001 = Active transition on INT0 pin ends sampling and starts conversion
	000 = Clearing sample bit ends sampling and starts conversion

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2) (CONTINUED)

bit 4	Unimplemented: Read as '0'
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when analog-to-digital conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NB					CH0SB<4:0>(1))						
bit 15		-					bit 8					
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NA					CH0SA<4:0>(1)						
bit 7							bit 0					
Legend:												
R = Readable		W = Writable b	it	•	nented bit, read							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
h# 45			Innut Calast	far Camala D hi								
bit 15		annel 0 Negative 0 negative input	-	Ior Sample B bi	IL							
		0 negative input										
bit 14-13	Unimplemer	nted: Read as '0	,									
bit 12-8	CH0SB<4:0>	-: Channel 0 Pos	sitive Input Se	elect for Sample	e B bits ⁽¹⁾							
	11111 = Ch a	annel 0 positive i	nput is AN31									
	11110 = Channel 0 positive input is AN30											
	•											
	•											
		annel 0 positive i										
		annel 0 positive i annel 0 positive i										
bit 7		annel 0 Negative	•	for Sample A bi	it							
		0 negative input										
		0 negative input										
bit 6-5	Unimplemer	nted: Read as '0	,									
bit 4-0	CH0SA<4:0>	Channel 0 Pos	itive Input Se	elect for Sample	e A bits ⁽¹⁾							
		annel 0 positive i										
	11110 = Cha	annel 0 positive i	nput is AN30									
	•											
	•											
		annel 0 positive i										
		annel 0 positive i annel 0 positive i										
			1									

REGISTER 20-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS					ure -40°	$C \le TA \le$	+85°C f	(unless otherwise stated) for Industrial for Extended
Param No.	Symbol	bol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range ⁽²⁾		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter	.)	-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

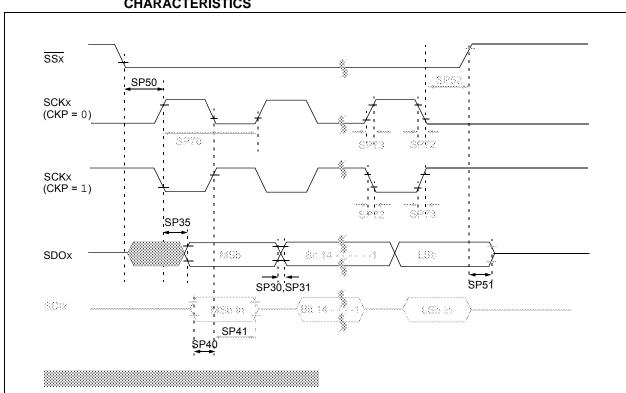
2: These parameters are characterized by similarity but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base or communication clocks used by peripherals use the formula:

Peripheral Clock Jitter = DCLK / $\sqrt{(Fosc/Peripheral bit rate clock)}$

Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz

SPI SCK Jitter = [DCLK / \(\lambda(80 MHz/5 MHz))] = [3\(\lambda / 16] = [3\(\lambda / 4] = 0.75\)

TABLE 24-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY


AC CHA	RACTERISTICS		d Operating temper		-40°0	3.0V to 3.6V (unless ot $C \le TA \le +85^{\circ}C$ for Indu $C \le TA \le +125^{\circ}C$ for Extermine	strial				
Param No.	Characteristic	Min	Тур	Max	Units	Conditions					
	Internal FRC Accuracy @ 7.3728 MHz ⁽¹⁾										
F20a	FRC	-2	_	+2	%	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V				
F20b	FRC	-5	_	+5	%	$-40^{\circ}C \le TA \le +125^{\circ}C \qquad VDD = 3.0-3.6V$					

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 24-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 32.768 kHz ⁽¹⁾								
F21a	LPRC	-30	_	+30	%	$-40^\circ C \le T A \le +85^\circ C$	—		
F21b	LPRC	-35	_	+35	%	$-40^{\circ}C \le TA \le +125^{\circ}C \qquad \qquad$			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 24-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

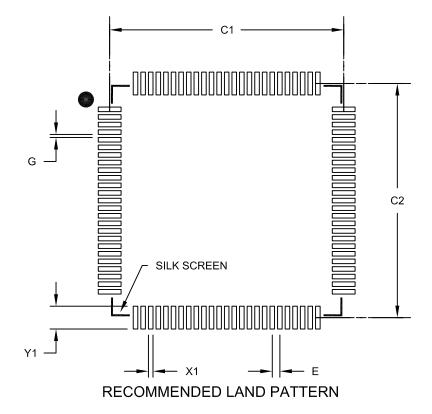

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20a	Nr	Resolution	1:	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2	-	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	_	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	_	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity	—			—	Guaranteed
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with i	nternal '	VREF+/VREF-
AD20a	Nr	Resolution	1	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	_	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	—	Monotonicity	—		-	—	Guaranteed
		Dynamic	Performa	ance (12	-bit Mod	e)	
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	_
AD32a	SFDR	Spurious Free Dynamic Range	80			dB	_
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	_
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits	_

TABLE 24-40: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽¹⁾

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

Revision D (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description			
Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers"	Updated the Recommended Minimum Connection (see Figure 2-1).			
Section 9.0 "Oscillator Configuration"	Updated the COSC<2:0> and NOSC<2:0> bit value definitions for '001' (see Register 9-1).			
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the Analog-to-Digital Conversion Clock Period Block Diagram (see Figure 20-2).			
Section 21.0 "Special Features"	Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 21-1).			
Section 24.0 "Electrical Characteristics"	Updated "Absolute Maximum Ratings".			
	Updated Operating MIPS vs. Voltage (see Table 24-1).			
	Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 24-4).			
	Updated the notes in the following tables:			
	• Table 24-5			
	Table 24-6			
	• Table 24-7			
	Table 24-8			
	Updated the I/O Pin Output Specifications (see Table 24-10).			
	Updated the Conditions for parameter BO10 (see Table 24-11).			
	Updated the Conditions for parameters D136b, D137b, and D138b (TA = 150°C) (see Table 24-12).			
Section 25.0 "High Temperature Electrical	Updated "Absolute Maximum Ratings".			
Characteristics"	Updated the I/O Pin Output Specifications (see Table 25-6).			
	Removed Table 25-7: DC Characteristics: Program Memory.			

R

Reader Response	2
ADxCHS0 (ADCx Input Channel 0 Select	,
ADxCHS123 (ADCx Input	
Channel 1, 2, 3 Select)	
ADxCON2 (ADCx Control 2)	
ADxCON3 (ADCx Control 3)214 ADxCON4 (ADCx Control 4)215	
ADxCON4 (ADCx Control 4)215 ADxCSSH (ADCx Input Scan Select High)218	
ADxCSSI (ADCx Input Scan Select Fight)	, ,
ADxPCFGH (ADCx Port Configuration High)	
ADxPCFGL (ADCx Port Configuration Low)	
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) 195	
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 196	
CiCFG1 (ECAN Baud Rate Configuration 1) 190	
CiCFG2 (ECAN Baud Rate Configuration 2) 191	
CiCTRL1 (ECAN Control 1) 182	
CiCTRL2 (ECAN Control 2) 183	
CiEC (ECAN Transmit/Receive Error Count))
CIFCTRL (ECAN FIFO Control) 185	5
CiFEN1 (ECAN Acceptance Filter Enable) 192	
CiFIFO (ECAN FIFO Status)186	5
CiFMSKSEL1 (ECAN Filter 7-0 Mask	
Selection)198, 199)
CiINTE (ECAN Interrupt Enable) 188	
CiINTF (ECAN Interrupt Flag)187	'
CiRXFnEID (ECAN Acceptance Filter n	
Extended Identifier) 197	'
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier) 197	
CiRXFUL1 (ECAN Receive Buffer Full 1)201	
CiRXFUL2 (ECAN Receive Buffer Full 2)	
CiRXMnEID (ECAN Acceptance Filter Mask n	
Extended Identifier))
CiRXMnSID (ECAN Acceptance Filter Mask n	,
Standard Identifier) 200 CiRXOVF1 (ECAN Receive Buffer Overflow 1) 202	
CIRXOVF1 (ECAN Receive Buffer Overflow 1)	
CiTRBnDLC (ECAN Buffer n Data	•
Length Control)	
CiTRBnEID (ECAN Buffer n Extended Identifier) 204	
CiTRBnSID (ECAN Buffer n Standard Identifier) 204	
CiTRBnSTAT (ECAN Receive Buffer n Status)	
CiTRmnCON (ECAN TX/RX Buffer m Control)	
CiVEC (ECAN Interrupt Code)	
CLKDIV (Clock Divisor) 128	
CORCON (Core Control)	ŀ
DMACS0 (DMA Controller Status 0)	
DMACS1 (DMA Controller Status 1) 121	
DMAxCNT (DMA Channel x Transfer Count) 118	
DMAxCON (DMA Channel x Control)115	
DMAxPAD (DMA Channel x Peripheral Address) 118	
DMAxREQ (DMA Channel x IRQ Select) 116	į
DMAxSTA (DMA Channel x RAM Start	
Address A) 117	,
DMAxSTB (DMA Channel x RAM Start	_
Address B)	
DSADR (Most Recent DMA RAM Address)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)170	'

ICxCON (Input Capture x Control)	154
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 2)	
IFS4 (Interrupt Flag Status 4)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
IPC11 (Interrupt Priority Control 11)	
IPC12 (Interrupt Priority Control 12)	
IPC13 (Interrupt Priority Control 13)	106
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	107
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
NVMCON (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	129
PMD1 (Peripheral Module Disable Control	
Register 1)	135
PMD1 (Peripheral Module Disable Control	
Register 1)	135
PMD2 (Peripheral Module Disable Control	
Register 2)	137
PMD3 (Peripheral Module Disable Control	
Register 3)	139
RCON (Reset Control)	66
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU Status)	
T1CON (Timer1 Control)	
TxCON (T2CON, T4CON, T6CON or	
T8CON Control)	150
TyCON (T3CON, T5CON, T7CON or	100
T9CON Control)	151
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
	177
Reset	67
Clock Source Selection	
Special Function Register Reset States	
Times	
Reset Sequence	
Resets	65