

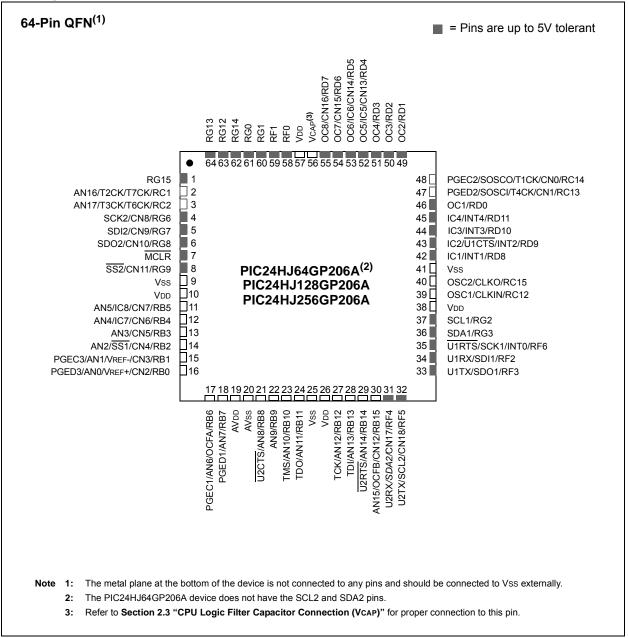
Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

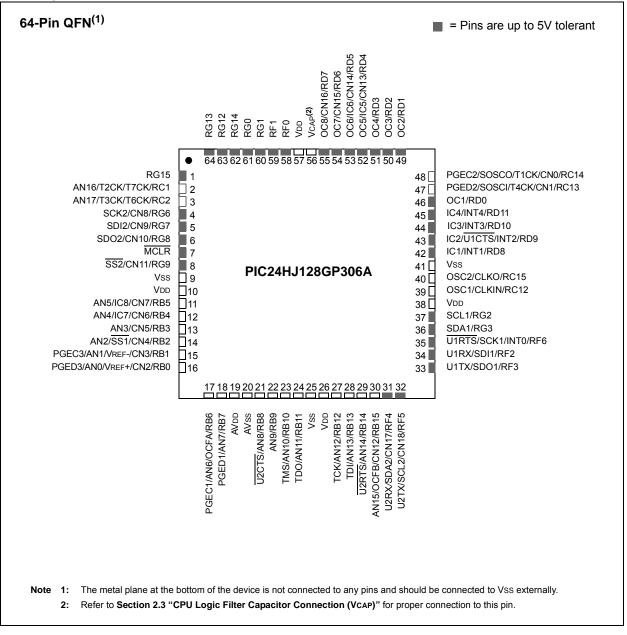
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details


E·XFI

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | PIC                                                                             |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 40 MIPs                                                                         |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                         |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                      |
| Number of I/O              | 53                                                                              |
| Program Memory Size        | 64KB (22K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 8K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 18x10b/12b                                                                  |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 64-VFQFN Exposed Pad                                                            |
| Supplier Device Package    | 64-VQFN (9x9)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp506at-i-mr |
|                            |                                                                                 |


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## Pin Diagrams



## Pin Diagrams (Continued)



## Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the PIC24HJ256GP610A product page on the Microchip web site (www.microchip.com) or by selecting a family reference manual section from the following list.

In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit<sup>™</sup> (I2C<sup>™</sup>)" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

| REGISTER 3-2. CORCON: CORE CONTROL REGISTER | REGISTER 3-2: | CORCON: CORE CONTROL REGISTER |
|---------------------------------------------|---------------|-------------------------------|
|---------------------------------------------|---------------|-------------------------------|

| U-0                        | U-0           | U-0               | U-0              | U-0                 | U-0                                | U-0              | U-0   |  |
|----------------------------|---------------|-------------------|------------------|---------------------|------------------------------------|------------------|-------|--|
| —                          | —             | —                 | —                | —                   | -                                  | —                | —     |  |
| bit 15                     |               |                   |                  |                     |                                    |                  | bit 8 |  |
|                            |               |                   |                  |                     |                                    |                  |       |  |
| U-0                        | U-0           | U-0               | U-0              | R/C-0               | R/W-0                              | U-0              | U-0   |  |
|                            | —             | —                 | —                | IPL3 <sup>(1)</sup> | PSV                                | —                | —     |  |
| bit 7                      |               |                   | •                |                     |                                    |                  | bit 0 |  |
|                            |               |                   |                  |                     |                                    |                  |       |  |
| Legend: C = Clear only bit |               |                   | y bit            |                     |                                    |                  |       |  |
| R = Readable               | e bit         | W = Writable      | bit              | -n = Value at       | POR                                | '1' = Bit is set |       |  |
| 0' = Bit is clea           | ared          | 'x = Bit is unk   | nown             | U = Unimpler        | U = Unimplemented bit, read as '0' |                  |       |  |
|                            |               |                   |                  |                     |                                    |                  |       |  |
| bit 15-4                   | Unimplemen    | ted: Read as '    | 0'               |                     |                                    |                  |       |  |
| bit 3                      | IPL3: CPU In  | terrupt Priority  | Level Status b   | oit 3(1)            |                                    |                  |       |  |
|                            | 1 = CPU inter | rupt priority lev | el is greater tl | han 7               |                                    |                  |       |  |
|                            | 0 = CPU inter | rupt priority lev | el is 7 or less  |                     |                                    |                  |       |  |
| bit 2                      | PSV: Program  | n Space Visibili  | ty in Data Spa   | ice Enable bit      |                                    |                  |       |  |
|                            | 1 = Program   | space visible in  | data space       |                     |                                    |                  |       |  |
|                            | 0 = Program   | space not visib   | le in data spac  | ce                  |                                    |                  |       |  |
| bit 1-0                    | Unimplemen    | ted: Read as '    | 0'               |                     |                                    |                  |       |  |
|                            |               |                   |                  |                     |                                    |                  |       |  |

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

## 4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 3.** "**Data Memory**" (DS70202) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The PIC24HJXXXGPX06A/X08A/X10A architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

## 4.1 Program Address Space

The program address memory space of the PIC24HJXXXGPX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.4** "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24HJXXXGPX06A/X08A/ X10A family of devices are shown in Figure 4-1.

|                            | PIC24HJ64XXXXXA                                    |  | PIC24HJ128XXXXXA                  | PIC24HJ256XXXXXA                      |                                  |
|----------------------------|----------------------------------------------------|--|-----------------------------------|---------------------------------------|----------------------------------|
| <b>▲</b>                   | GOTO Instruction                                   |  | GOTO Instruction                  | <br>GOTO Instruction                  | 0x000000<br>- 0x000002           |
|                            | Reset Address                                      |  | Reset Address                     | <br>Reset Address                     | 0x000004                         |
|                            | Interrupt Vector Table                             |  | Interrupt Vector Table            | Interrupt Vector Table                | 0x0000FE                         |
|                            | Reserved                                           |  | Reserved                          | <br>Reserved                          | 0x000100                         |
|                            | Alternate Vector Table                             |  | Alternate Vector Table            | Alternate Vector Table                | 0x000104<br>0x0001FE             |
| User Memory Space          | User Program<br>Flash Memory<br>(22K instructions) |  | User Program<br>Flash Memory      | <br>User Program<br>Flash Memory      | 0x000200                         |
| emory                      |                                                    |  | (44K instructions)                | (88K instructions)                    | 0x0157FE                         |
| ser Mo                     |                                                    |  |                                   | <br>                                  | 0x015800                         |
| Š                          | Unimplemented<br>(Read '0's)                       |  | Unimplemented<br>(Read '0's)      |                                       | 0x02ABFE<br>0x02AC00             |
|                            |                                                    |  |                                   | Unimplemented<br>(Read '0's)          |                                  |
|                            |                                                    |  |                                   |                                       | 0x7FFFE<br>0x800000              |
| ry Space                   | Reserved                                           |  | Reserved                          | Reserved                              | 0×F7FFE                          |
| IOU                        | Device Configuration<br>Registers                  |  | Device Configuration<br>Registers | <br>Device Configuration<br>Registers | 0xF80000                         |
| Configuration Memory Space | Registers                                          |  | Reserved                          | <br>Reserved                          | 0xF80017<br>0xF80010             |
|                            | DEVID (2)                                          |  | DEVID (2)                         | <br>DEVID (2)                         | 0xFEFFFE<br>0xFF0000<br>0xFFFFFE |

### FIGURE 4-1: PROGRAM MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A FAMILY DEVICES

| File Name  | Addr | Bit 15 | Bit 14    | Bit 13 | Bit 12 | Bit 11   | Bit 10   | Bit 9    | Bit 8    | Bit 7                        | Bit 6    | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0  | All<br>Resets |
|------------|------|--------|-----------|--------|--------|----------|----------|----------|----------|------------------------------|----------|-------|--------|--------|--------|-------|--------|---------------|
| C1RXF1EID  | 0446 |        | 1         | 1      | EID<   | :15:8>   |          |          |          | EID<7:0>                     |          |       |        |        |        |       | xxxx   |               |
| C1RXF2SID  | 0448 |        |           |        | SID<   | :10:3>   |          |          |          | SID<2:0> — EXIDE — EID<17:10 |          |       | 17:16> | xxxx   |        |       |        |               |
| C1RXF2EID  | 044A |        |           |        | EID<   | :15:8>   |          |          |          |                              |          |       | EID<   | 7:0>   |        |       |        | xxxx          |
| C1RXF3SID  | 044C |        |           |        | SID<   | :10:3>   |          |          |          |                              | SID<2:0> |       | _      | EXIDE  | _      | EID<  | 17:16> | xxxx          |
| C1RXF3EID  | 044E |        | EID<15:8> |        |        |          |          |          |          |                              | EID<     | 7:0>  |        |        |        | xxxx  |        |               |
| C1RXF4SID  | 0450 |        | SID<10:3> |        |        |          |          |          | SID<2:0> |                              | _        | EXIDE | _      | EID<   | 17:16> | xxxx  |        |               |
| C1RXF4EID  | 0452 |        | EID<15:8> |        |        |          |          |          |          |                              | EID<     | 7:0>  |        |        |        | xxxx  |        |               |
| C1RXF5SID  | 0454 |        |           |        | SID<   | :10:3>   |          |          |          |                              | SID<2:0> |       | _      | EXIDE  | —      | EID<' | 17:16> | xxxx          |
| C1RXF5EID  | 0456 |        |           |        | EID<   | :15:8>   |          |          |          |                              |          |       | EID<   | 7:0>   |        |       |        | xxxx          |
| C1RXF6SID  | 0458 |        |           |        | SID<   | :10:3>   |          |          |          | SID<2:0> — EXIDE — EID<1     |          |       |        |        | 17:16> | xxxx  |        |               |
| C1RXF6EID  | 045A |        | EID<15:8> |        |        |          | EID<7:0> |          |          |                              |          |       |        | xxxx   |        |       |        |               |
| C1RXF7SID  | 045C |        | SID<10:3> |        |        |          |          | SID<2:0> |          | —                            | EXIDE    | —     | EID<'  | 17:16> | xxxx   |       |        |               |
| C1RXF7EID  | 045E |        | EID<15:8> |        |        |          | EID<7:0> |          |          |                              |          |       | xxxx   |        |        |       |        |               |
| C1RXF8SID  | 0460 |        | SID<10:3> |        |        |          |          | SID<2:0> |          | —                            | EXIDE    | _     | EID<'  | 17:16> | xxxx   |       |        |               |
| C1RXF8EID  | 0462 |        |           |        | EID<   | :15:8>   |          |          |          | EID<7:0>                     |          |       |        |        |        | xxxx  |        |               |
| C1RXF9SID  | 0464 |        |           |        | SID<   | :10:3>   |          |          |          | SID<2:0> — EXIDE — EID<      |          |       |        |        | 17:16> | xxxx  |        |               |
| C1RXF9EID  | 0466 |        |           |        | EID<   | :15:8>   |          |          |          | EID<7:0>                     |          |       |        |        |        |       | xxxx   |               |
| C1RXF10SID | 0468 |        |           |        | SID<   | :10:3>   |          |          |          | SID<2:0> — EXIDE — EID<17:   |          |       |        |        | 17:16> | xxxx  |        |               |
| C1RXF10EID | 046A |        |           |        | EID<   | :15:8>   |          |          |          | EID<7:0>                     |          |       |        |        |        | xxxx  |        |               |
| C1RXF11SID | 046C |        |           |        | SID<   | :10:3>   |          |          |          |                              | SID<2:0> |       | —      | EXIDE  | —      | EID<' | 17:16> | xxxx          |
| C1RXF11EID | 046E |        |           |        | EID<   | :15:8>   |          |          |          |                              |          |       | EID<   | 7:0>   |        |       |        | xxxx          |
| C1RXF12SID | 0470 |        |           |        | SID<   | :10:3>   |          |          |          |                              | SID<2:0> |       | —      | EXIDE  | —      | EID<  | 17:16> | xxxx          |
| C1RXF12EID | 0472 |        |           |        | EID<   | :15:8>   |          |          |          |                              |          |       | EID<   | 7:0>   |        |       |        | xxxx          |
| C1RXF13SID | 0474 |        |           |        | SID<   | :10:3>   |          |          |          | SID<2:0> — EXIDE — EI        |          |       | EID<   | 17:16> | xxxx   |       |        |               |
| C1RXF13EID | 0476 |        | EID<15:8> |        |        | EID<7:0> |          |          |          |                              |          | xxxx  |        |        |        |       |        |               |
| C1RXF14SID | 0478 |        |           |        | SID<   | :10:3>   |          |          |          |                              | SID<2:0> |       | -      | EXIDE  | —      | EID<  | 17:16> | xxxx          |
| C1RXF14EID | 047A |        |           |        | EID<   | :15:8>   |          |          |          |                              |          |       | EID<   | 7:0>   |        |       |        | xxxx          |
| C1RXF15SID | 047C |        |           |        | SID<   | :10:3>   |          |          |          |                              | SID<2:0> |       | —      | EXIDE  | —      | EID<' | 17:16> | xxxx          |
| C1RXF15EID | 047E |        |           |        | EID<   | :15:8>   |          |          |          |                              |          |       | EID<   | 7:0>   |        |       |        | xxxx          |

#### ONILY (CONTINUED) DICOALLINNY ODEACA/E40A/C40A DEV/ICEO

Legend:

© 2009-2012 Microchip Technology Inc.

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

| R/W-      | 0 R/W-0                                             | U-0                                                     | U-0                       | U-0                                                 | U-0                | U-0              | R/W-0                |
|-----------|-----------------------------------------------------|---------------------------------------------------------|---------------------------|-----------------------------------------------------|--------------------|------------------|----------------------|
| TRAP      | R IOPUWR                                            | —                                                       | —                         | —                                                   | —                  | —                | VREGS <sup>(3)</sup> |
| bit 15    | ·                                                   |                                                         |                           |                                                     |                    |                  | bit                  |
| R/W-      | 0 R/W-0                                             | R/W-0                                                   | R/W-0                     | R/W-0                                               | R/W-0              | R/W-1            | R/W-1                |
| EXTR      |                                                     | SWDTEN <sup>(2)</sup>                                   | WDTO                      | SLEEP                                               | IDLE               | BOR              | POR                  |
| bit 7     |                                                     |                                                         |                           |                                                     |                    |                  | bit                  |
| Legend:   |                                                     |                                                         |                           |                                                     |                    |                  |                      |
| R = Read  | able bit                                            | W = Writable                                            | bit                       | U = Unimpler                                        | nented bit, read   | as '0'           |                      |
| -n = Valu | e at POR                                            | '1' = Bit is set                                        |                           | '0' = Bit is cle                                    | ared               | x = Bit is unk   | nown                 |
| bit 15    | 1 = A Trap Co                                       | Reset Flag bit<br>onflict Reset ha<br>onflict Reset ha  | s occurred                | d                                                   |                    |                  |                      |
| bit 14    | 1 = An illega<br>Address                            | l opcode deter<br>Pointer caused                        | ction, an ille<br>a Reset | W Access Rese<br>gal address mo<br>Reset has not oo | ode or uninitiali  | zed W regist     | er used as a         |
| bit 13-9  | Unimplemen                                          | ted: Read as 'o                                         | )'                        |                                                     |                    |                  |                      |
| bit 8     | 1 = Voltage R                                       | age Regulator S<br>egulator is acti<br>egulator goes i  | ve during Sle             |                                                     | еер                |                  |                      |
| bit 7     | 1 = A Master                                        | al Reset (MCL<br>Clear (pin) Res<br>Clear (pin) Res     | et has occur              |                                                     |                    |                  |                      |
| bit 6     | 1 <b>= A</b> reset                                  | re Reset (Instru<br>instruction has<br>instruction has  | been execut               | ed                                                  |                    |                  |                      |
| bit 5     | <b>SWDTEN:</b> So<br>1 = WDT is en<br>0 = WDT is di |                                                         | Disable of W              | DT bit <sup>(2)</sup>                               |                    |                  |                      |
| bit 4     | 1 = WDT time                                        | hdog Timer Tim<br>e-out has occur<br>e-out has not oc   | red                       | it                                                  |                    |                  |                      |
| bit 3     | SLEEP: Wake<br>1 = Device ha                        | e-up from Sleep<br>as been in Slee<br>as not been in S  | o Flag bit<br>p mode      |                                                     |                    |                  |                      |
| bit 2     | IDLE: Wake-u<br>1 = Device wa                       | up from Idle Fla<br>as in Idle mode<br>as not in Idle m | g bit                     |                                                     |                    |                  |                      |
| bit 1     | 1 = A Brown-                                        | out Reset Flag<br>out Reset has c<br>out Reset has r    | occurred                  |                                                     |                    |                  |                      |
| bit 0     | <b>POR:</b> Power-<br>1 = A Power-                  | on Reset Flag I<br>on Reset has o<br>on Reset has n     | bit<br>ccurred            |                                                     |                    |                  |                      |
| Note 1:   | All of the Reset sta<br>cause a device Re           | -                                                       | set or cleare             | ed in software. S                                   | Setting one of the | ese bits in soff | tware does no        |
| 2:        | If the FWDTEN Co<br>SWDTEN bit settin               | ig.                                                     |                           | -                                                   | -                  | -                |                      |
| 3:        | For PIC24HJ256G                                     | PX06A/X08A/X                                            | (10A devices              | , this bit is unim                                  | plemented and      | reads back p     | rogrammed            |

**3:** For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed value.

| U-0            | R/W-1                                                                                                                                   | R/W-0                                                                                     | R/W-0           | U-0              | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------|------------------|-----------------|-----------------|-------|--|--|--|--|--|
| —              |                                                                                                                                         | T6IP<2:0>                                                                                 |                 | —                |                 | DMA4IP<2:0>     |       |  |  |  |  |  |
| bit 15         |                                                                                                                                         |                                                                                           |                 |                  |                 |                 | bit   |  |  |  |  |  |
|                |                                                                                                                                         |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
| U-0            | U-0                                                                                                                                     | U-0                                                                                       | U-0             | U-0              | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |  |
| _              | —                                                                                                                                       | —                                                                                         |                 |                  |                 | OC8IP<2:0>      |       |  |  |  |  |  |
| bit 7          |                                                                                                                                         |                                                                                           |                 |                  |                 |                 | bit   |  |  |  |  |  |
| Legend:        |                                                                                                                                         |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
| R = Readab     | ole bit                                                                                                                                 | W = Writable                                                                              | bit             | U = Unimple      | mented bit, rea | d as '0'        |       |  |  |  |  |  |
| -n = Value a   | at POR                                                                                                                                  | '1' = Bit is set                                                                          |                 | '0' = Bit is cle | eared           | x = Bit is unkn | iown  |  |  |  |  |  |
| bit 1 <i>5</i> | l inima la vere                                                                                                                         | nted. Deed at f                                                                           | <u>`</u>        |                  |                 |                 |       |  |  |  |  |  |
| bit 15         | -                                                                                                                                       | nted: Read as '                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
| bit 14-12      |                                                                                                                                         | Timer6 Interrupt                                                                          | •               |                  |                 |                 |       |  |  |  |  |  |
|                | 111 = Intern                                                                                                                            | <ul> <li>111 = Interrupt is priority 7 (highest priority interrupt)</li> <li>•</li> </ul> |                 |                  |                 |                 |       |  |  |  |  |  |
|                | •                                                                                                                                       | •                                                                                         |                 |                  |                 |                 |       |  |  |  |  |  |
|                | •                                                                                                                                       |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
|                |                                                                                                                                         | upt is priority 1                                                                         | ablad           |                  |                 |                 |       |  |  |  |  |  |
| L:1 11         |                                                                                                                                         | upt source is dis                                                                         |                 |                  |                 |                 |       |  |  |  |  |  |
| bit 11         | -                                                                                                                                       | nted: Read as '                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
| bit 10-8       | <b>DMA4IP&lt;2:0&gt;:</b> DMA Channel 4 Data Transfer Complete Interrupt Priority bits                                                  |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
|                | <ul> <li>111 = Interrupt is priority 7 (highest priority interrupt)</li> <li>•</li> </ul>                                               |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
|                | •                                                                                                                                       | •                                                                                         |                 |                  |                 |                 |       |  |  |  |  |  |
|                | •                                                                                                                                       | •                                                                                         |                 |                  |                 |                 |       |  |  |  |  |  |
|                |                                                                                                                                         | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled                       |                 |                  |                 |                 |       |  |  |  |  |  |
|                |                                                                                                                                         | •                                                                                         |                 |                  |                 |                 |       |  |  |  |  |  |
| bit 7-3        | -                                                                                                                                       | nted: Read as '                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
| bit 2-0        | <b>OC8IP&lt;2:0&gt;:</b> Output Compare Channel 8 Interrupt Priority bits<br>111 = Interrupt is priority 7 (highest priority interrupt) |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
|                | 111 = Interru<br>•                                                                                                                      | upt is priority 7 (i                                                                      | nignest priorit | y interrupt)     |                 |                 |       |  |  |  |  |  |
|                | •                                                                                                                                       |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
|                |                                                                                                                                         |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
|                | •                                                                                                                                       |                                                                                           |                 |                  |                 |                 |       |  |  |  |  |  |
|                |                                                                                                                                         | upt is priority 1<br>upt source is dis                                                    |                 |                  |                 |                 |       |  |  |  |  |  |

## REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

## REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

| R/W-0                | U-0   |
|----------------------|-----|-----|-----|-----|-----|-----|-------|
| FORCE <sup>(1)</sup> | —   | —   | —   | —   | —   | —   | —     |
| bit 15               |     |     |     |     |     |     | bit 8 |

| U-0   | R/W-0                  | R/W-0                  | R/W-0      | R/W-0      | R/W-0                  | R/W-0      | R/W-0      |
|-------|------------------------|------------------------|------------|------------|------------------------|------------|------------|
| —     | IRQSEL6 <sup>(2)</sup> | IRQSEL5 <sup>(2)</sup> | IRQSEL4(2) | IRQSEL3(2) | IRQSEL2 <sup>(2)</sup> | IRQSEL1(2) | IRQSEL0(2) |
| bit 7 |                        |                        |            |            |                        |            | bit 0      |

| Legend:           |                             |                      |                    |
|-------------------|-----------------------------|----------------------|--------------------|
| R = Readable bit  | U = Unimplemented bit, read | l as '0'             |                    |
| -n = Value at POR | '1' = Bit is set            | '0' = Bit is cleared | x = Bit is unknown |

bit 15 **FORCE:** Force DMA Transfer bit<sup>(1)</sup>

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits<sup>(2)</sup> 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

## REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

| bit 3 | <b>XWCOL3:</b> Channel 3 DMA RAM Write Collision Flag bit<br>1 = Write collision detected<br>0 = No write collision detected                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 2 | <ul> <li>XWCOL2: Channel 2 DMA RAM Write Collision Flag bit</li> <li>1 = Write collision detected</li> <li>0 = No write collision detected</li> </ul> |
| bit 1 | <b>XWCOL1:</b> Channel 1 DMA RAM Write Collision Flag bit<br>1 = Write collision detected<br>0 = No write collision detected                          |
| bit 0 | <b>XWCOL0:</b> Channel 0 DMA RAM Write Collision Flag bit<br>1 = Write collision detected<br>0 = No write collision detected                          |

| R/W-0        | R/W-0        | R/W-0                                 | R/W-0   | R/W-0             | U-0             | U-0            | U-0                  |
|--------------|--------------|---------------------------------------|---------|-------------------|-----------------|----------------|----------------------|
| T5MD         | T4MD         | T3MD                                  | T2MD    | T1MD              | _               |                | _                    |
| bit 15       |              |                                       |         |                   |                 |                | bit 8                |
|              |              |                                       |         |                   |                 |                |                      |
| R/W-0        | R/W-0        | R/W-0                                 | R/W-0   | R/W-0             | R/W-0           | R/W-0          | R/W-0                |
| I2C1MD       | U2MD         | U1MD                                  | SPI2MD  | SPI1MD            | C2MD            | C1MD           | AD1MD <sup>(1)</sup> |
| bit 7        |              | ·                                     |         | ·                 |                 |                | bit C                |
|              |              |                                       |         |                   |                 |                |                      |
| Legend:      |              |                                       |         |                   |                 |                |                      |
| R = Readab   | le bit       | W = Writable                          | bit     | U = Unimplem      | nented bit, rea | d as '0'       |                      |
| -n = Value a | t POR        | '1' = Bit is set                      |         | '0' = Bit is clea | ared            | x = Bit is unk | nown                 |
|              |              |                                       |         |                   |                 |                |                      |
| bit 15       |              | 5 Module Disal                        |         |                   |                 |                |                      |
|              |              | nodule is disable<br>nodule is enable |         |                   |                 |                |                      |
| bit 14       |              | 4 Module Disal                        |         |                   |                 |                |                      |
| Sit 11       | -            | odule is disable                      |         |                   |                 |                |                      |
|              | 0 = Timer4 m | odule is enable                       | ed      |                   |                 |                |                      |
| bit 13       | T3MD: Timer  | 3 Module Disal                        | ole bit |                   |                 |                |                      |
|              |              | odule is disable                      |         |                   |                 |                |                      |
| h# 40        |              | odule is enable                       |         |                   |                 |                |                      |
| bit 12       | -            | 2 Module Disal                        |         |                   |                 |                |                      |
|              | -            | odule is enable                       |         |                   |                 |                |                      |
| bit 11       | T1MD: Timer  | 1 Module Disal                        | ole bit |                   |                 |                |                      |
|              | 1 = Timer1 m | nodule is disable                     | ed      |                   |                 |                |                      |
|              |              | odule is enable                       |         |                   |                 |                |                      |
| bit 10-8     | -            | nted: Read as '                       |         |                   |                 |                |                      |
| bit 7        | _            | 1 Module Disat                        | ole bit |                   |                 |                |                      |
|              | -            | lule is disabled<br>lule is enabled   |         |                   |                 |                |                      |
| bit 6        |              | T2 Module Disa                        | hle hit |                   |                 |                |                      |
| bit 0        |              | nodule is disabl                      |         |                   |                 |                |                      |
|              | 0 = UART2 m  | nodule is enable                      | ed      |                   |                 |                |                      |
| bit 5        | U1MD: UAR    | T1 Module Disa                        | ble bit |                   |                 |                |                      |
|              | -            | nodule is disabl                      |         |                   |                 |                |                      |
| L:1 4        |              | nodule is enable                      |         |                   |                 |                |                      |
| bit 4        |              | l2 Module Disa<br>dule is disabled    |         |                   |                 |                |                      |
|              |              | dule is disabled                      |         |                   |                 |                |                      |
| bit 3        | SPI1MD: SPI  | I1 Module Disa                        | ble bit |                   |                 |                |                      |
|              | 1 = SPI1 mod | dule is disabled                      |         |                   |                 |                |                      |
|              | 0 = SPI1 mod | dule is enabled                       |         |                   |                 |                |                      |
| bit 2        |              | N2 Module Disa                        |         |                   |                 |                |                      |
|              | -            | nodule is disabl                      |         |                   |                 |                |                      |
|              | v = ECAN2 n  | nodule is enabl                       | eu      |                   |                 |                |                      |

## REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

**Note 1:** PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

## 14.1 Input Capture Registers

## **REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER**

| U-0                  | U-0                                                                                                                   | R/W-0                              | U-0              | U-0               | U-0             | U-0              | U-0   |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|-------------------|-----------------|------------------|-------|--|--|--|
| _                    | _                                                                                                                     | ICSIDL                             |                  | —                 | —               |                  | —     |  |  |  |
| bit 15               |                                                                                                                       |                                    |                  |                   |                 |                  | bit 8 |  |  |  |
|                      |                                                                                                                       |                                    |                  |                   |                 |                  |       |  |  |  |
| R/W-0                | R/W-0                                                                                                                 | R/W-0                              | R-0, HC          | R-0, HC           | R/W-0           | R/W-0            | R/W-0 |  |  |  |
| ICTMR <sup>(1)</sup> | ICI<                                                                                                                  | <1:0>                              | ICOV             | ICBNE             |                 | ICM<2:0>         |       |  |  |  |
| bit 7                |                                                                                                                       |                                    |                  |                   |                 |                  | bit   |  |  |  |
| Legend:              |                                                                                                                       |                                    |                  |                   |                 |                  |       |  |  |  |
| R = Readable         | bit                                                                                                                   | W = Writable                       | bit              | U = Unimpler      | nented bit, rea | d as '0'         |       |  |  |  |
| -n = Value at F      | POR                                                                                                                   | '1' = Bit is set                   |                  | '0' = Bit is cle  | ared            | x = Bit is unkn  | own   |  |  |  |
|                      |                                                                                                                       |                                    |                  |                   |                 |                  |       |  |  |  |
| bit 15-14            | Unimplemer                                                                                                            | nted: Read as '                    | 0'               |                   |                 |                  |       |  |  |  |
| bit 13               | ICSIDL: Inpu                                                                                                          | t Capture Modu                     | ule Stop in Idle | e Control bit     |                 |                  |       |  |  |  |
|                      |                                                                                                                       | ture module wi                     |                  |                   |                 |                  |       |  |  |  |
|                      |                                                                                                                       | ture module wi                     |                  | operate in CPU    | Idle mode       |                  |       |  |  |  |
| bit 12-8             | -                                                                                                                     | ted: Read as '                     |                  |                   |                 |                  |       |  |  |  |
| bit 7                |                                                                                                                       | t Capture Time                     |                  |                   |                 |                  |       |  |  |  |
|                      |                                                                                                                       | ntents are capt<br>ntents are capt |                  |                   |                 |                  |       |  |  |  |
| bit 6-5              | ICI<1:0>: Se                                                                                                          | lect Number of                     | Captures per     | Interrupt bits    |                 |                  |       |  |  |  |
|                      | 11 = Interrupt on every fourth capture event                                                                          |                                    |                  |                   |                 |                  |       |  |  |  |
|                      | <ul> <li>10 = Interrupt on every third capture event</li> <li>01 = Interrupt on every second capture event</li> </ul> |                                    |                  |                   |                 |                  |       |  |  |  |
|                      |                                                                                                                       | t on every seco<br>t on every capt |                  | rent              |                 |                  |       |  |  |  |
| bit 4                | -                                                                                                                     | Capture Overflo                    |                  | ı bit (read-onlv) | 1               |                  |       |  |  |  |
|                      | -                                                                                                                     | ture overflow o                    | -                | , (               |                 |                  |       |  |  |  |
|                      | 0 = No input capture overflow occurred                                                                                |                                    |                  |                   |                 |                  |       |  |  |  |
| bit 3                | ICBNE: Input                                                                                                          | t Capture Buffe                    | r Empty Statu    | s bit (read-only  | )               |                  |       |  |  |  |
|                      | 1 = Input capture buffer is not empty, at least one more capture value can be read                                    |                                    |                  |                   |                 |                  |       |  |  |  |
|                      |                                                                                                                       | ture buffer is e                   |                  |                   |                 |                  |       |  |  |  |
| bit 2-0              |                                                                                                                       | put Capture Mo                     |                  |                   |                 |                  |       |  |  |  |
|                      |                                                                                                                       |                                    |                  |                   |                 | eep or Idle mode | •     |  |  |  |
|                      | (Rising edge detect only, all other control bits are not applicable.)<br>110 = Unused (module disabled)               |                                    |                  |                   |                 |                  |       |  |  |  |
|                      | 101 = Capture mode, every 16th rising edge                                                                            |                                    |                  |                   |                 |                  |       |  |  |  |
|                      |                                                                                                                       | re mode, every                     |                  | e                 |                 |                  |       |  |  |  |
|                      |                                                                                                                       | re mode, every<br>re mode, every   |                  |                   |                 |                  |       |  |  |  |
|                      |                                                                                                                       | re mode, every                     |                  | and falling)      |                 |                  |       |  |  |  |
|                      |                                                                                                                       | :0> bits do not                    |                  | pt generation f   | or this mode.)  |                  |       |  |  |  |
|                      | 000 = Input c                                                                                                         | apture module                      | turned off       |                   |                 |                  |       |  |  |  |

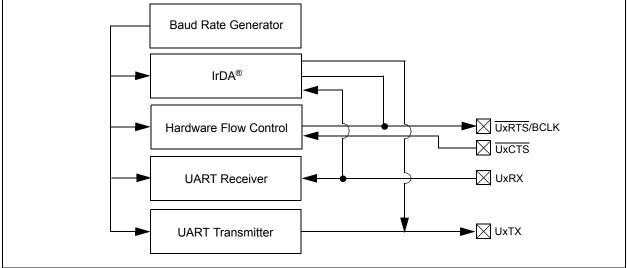
| R-0 HSC         | R-0 HSC                                                                                                                                                                                                                                                                                                                                                                               | U-0                                                                                                   | U-0                         | U-0              | R/C-0 HS                                         | R-0 HSC          | R-0 HSC         |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|------------------|--------------------------------------------------|------------------|-----------------|--|
| ACKSTAT         | TRSTAT                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | —                           |                  | BCL                                              | GCSTAT           | ADD10           |  |
| bit 15          |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                             | I                |                                                  | 1                | bit 8           |  |
| R/C-0 HS        | R/C-0 HS                                                                                                                                                                                                                                                                                                                                                                              | R-0 HSC                                                                                               | R/C-0 HSC                   | R/C-0 HSC        | R-0 HSC                                          | R-0 HSC          | R-0 HSC         |  |
| IWCOL           | I2COV                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                     | Р                           | S                | R W                                              | RBF              | TBF             |  |
| bit 7           | 12000                                                                                                                                                                                                                                                                                                                                                                                 | D_A                                                                                                   |                             | 3                | R_VV                                             | KDF              | bit 0           |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                             |                  |                                                  |                  |                 |  |
| Legend:         | egend: U = Unimplemented bit, read as '0' C = Clear only b                                                                                                                                                                                                                                                                                                                            |                                                                                                       |                             |                  |                                                  |                  |                 |  |
| R = Readable    | bit                                                                                                                                                                                                                                                                                                                                                                                   | W = Writable                                                                                          | bit                         | HS = Set in h    | ardware                                          | HSC = Hardwa     | are set/cleared |  |
| -n = Value at P | POR                                                                                                                                                                                                                                                                                                                                                                                   | '1' = Bit is set                                                                                      |                             | '0' = Bit is cle | ared                                             | x = Bit is unkn  | iown            |  |
| bit 15          | (when operati<br>1 = NACK rec<br>0 = ACK rece                                                                                                                                                                                                                                                                                                                                         | cknowledge St<br>ing as I <sup>2</sup> C mas<br>ceived from slav<br>ived from slav<br>or clear at end | ter, applicable<br>ve<br>e  |                  | nsmit operation                                  | )                |                 |  |
| bit 14          | 1 = Master tra<br>0 = Master tra                                                                                                                                                                                                                                                                                                                                                      | ansmit is in pro<br>ansmit is not in                                                                  | gress (8 bits -<br>progress | + ACK)           |                                                  | to master trans  |                 |  |
| bit 13-11       | Unimplemen                                                                                                                                                                                                                                                                                                                                                                            | ted: Read as '                                                                                        | 0'                          |                  |                                                  |                  |                 |  |
| bit 10          | BCL: Master                                                                                                                                                                                                                                                                                                                                                                           | Bus Collision [                                                                                       | Detect bit                  |                  |                                                  |                  |                 |  |
|                 | 0 = No collisio                                                                                                                                                                                                                                                                                                                                                                       | lision has beer<br>on<br>at detection o                                                               |                             | -                | peration                                         |                  |                 |  |
| bit 9           | GCSTAT: Ger                                                                                                                                                                                                                                                                                                                                                                           | neral Call Statu                                                                                      | ıs bit                      |                  |                                                  |                  |                 |  |
|                 | 0 = General c                                                                                                                                                                                                                                                                                                                                                                         | all address wa<br>all address wa<br>when address                                                      | is not received             |                  | ess. Hardware o                                  | lear at Stop det | ection.         |  |
| bit 8           | ADD10: 10-B                                                                                                                                                                                                                                                                                                                                                                           | it Address Stat                                                                                       | us bit                      |                  |                                                  |                  |                 |  |
|                 | 0 = 10-bit add                                                                                                                                                                                                                                                                                                                                                                        | lress was mate<br>lress was not r<br>at match of 2r                                                   | natched                     | ched 10-bit ad   | dress. Hardwa                                    | re clear at Stop | detection.      |  |
| bit 7           | IWCOL: Write                                                                                                                                                                                                                                                                                                                                                                          | e Collision Dete                                                                                      | ect bit                     |                  |                                                  |                  |                 |  |
|                 | 0 = No collisio                                                                                                                                                                                                                                                                                                                                                                       | on                                                                                                    | C                           |                  | ause the I <sup>2</sup> C mo<br>ousy (cleared by |                  |                 |  |
| bit 6           |                                                                                                                                                                                                                                                                                                                                                                                       | ive Overflow F                                                                                        |                             |                  | 5 ( )                                            | ,                |                 |  |
|                 | 1 = A byte wa<br>0 = No overflo                                                                                                                                                                                                                                                                                                                                                       | as received wh                                                                                        | ile the I2CxRC              | -                | still holding the                                | -                |                 |  |
| L:1 F           |                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                     |                             |                  | CV (cleared by s                                 | sottware).       |                 |  |
| bit 5           | <ul> <li>D_A: Data/Address bit (when operating as I<sup>2</sup>C slave)</li> <li>1 = Indicates that the last byte received was data</li> <li>0 = Indicates that the last byte received was device address</li> <li>Hardware clear at device address match. Hardware set by reception of slave byte</li> </ul>                                                                         |                                                                                                       |                             |                  |                                                  |                  |                 |  |
| bit 4           | <ul> <li>0 = Indicates that the last byte received was device address</li> <li>Hardware clear at device address match. Hardware set by reception of slave byte.</li> <li>P: Stop bit</li> <li>1 = Indicates that a Stop bit has been detected last</li> <li>0 = Stop bit was not detected last</li> <li>Hardware set or clear when Start, Repeated Start or Stop detected.</li> </ul> |                                                                                                       |                             |                  |                                                  |                  |                 |  |

## REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

## 18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24HJXXXGPX06A/X08A/X10A device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA<sup>®</sup> encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8 or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit Prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA<sup>®</sup> Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA<sup>®</sup> Support

A simplified block diagram of the UART is shown in Figure 18-1. The UART module consists of the key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver





- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
  - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

## 19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*, Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185), which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

## 19.1 Overview

The Enhanced Controller Area Network (ECAN<sup>™</sup>) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJXXXGPX06A/X08A/X10A devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
   acceptance filters
- 3 full acceptance filter masks
- DeviceNet<sup>™</sup> addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation

- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

## 19.2 Frame Types

The CAN module transmits various types of frames which include data messages, remote transmission requests and as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID).

- Extended Data Frame: An extended data frame is similar to a standard data frame but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

## REGISTER 19-2: CiCTRL2: ECAN™ MODULE CONTROL REGISTER 2

| U-0          | U-0                | U-0                               | U-0             | U-0                  | U-0              | U-0                | U-0   |  |
|--------------|--------------------|-----------------------------------|-----------------|----------------------|------------------|--------------------|-------|--|
| _            | _                  | _                                 |                 | —                    | —                |                    | —     |  |
| bit 15       |                    |                                   |                 |                      |                  |                    | bit 8 |  |
|              |                    |                                   |                 |                      |                  |                    |       |  |
| U-0          | U-0                | U-0                               | R-0             | R-0                  | R-0              | R-0                | R-0   |  |
| —            | —                  |                                   |                 |                      | DNCNT<4:0>       |                    |       |  |
| bit 7        |                    |                                   |                 |                      |                  |                    | bit 0 |  |
|              |                    |                                   |                 |                      |                  |                    |       |  |
| Legend:      |                    |                                   |                 |                      |                  |                    |       |  |
| R = Readab   | le bit             | W = Writable bit                  |                 | U = Unimpler         | mented bit, read | 1 as '0'           |       |  |
| -n = Value a | t POR              | '1' = Bit is set                  |                 | '0' = Bit is cleared |                  | x = Bit is unknown |       |  |
|              |                    |                                   |                 |                      |                  |                    |       |  |
| bit 15-5     | Unimplemen         | ted: Read as '                    | 0'              |                      |                  |                    |       |  |
| bit 4-0      | DNCNT<4:0>         | : DeviceNet™                      | Filter Bit Num  | ber bits             |                  |                    |       |  |
|              | 10010-1111         | 1 = Invalid sele                  | ection          |                      |                  |                    |       |  |
|              | 10001 <b>= Con</b> | npare up to dat                   | a byte 3, bit 6 | with EID<17>         |                  |                    |       |  |
|              | •                  |                                   |                 |                      |                  |                    |       |  |
|              | •                  |                                   |                 |                      |                  |                    |       |  |
|              | •                  |                                   |                 |                      |                  |                    |       |  |
|              |                    | npare up to dat<br>not compare da | -               | with EID<0>          |                  |                    |       |  |

## **REGISTER 19-10:** CiCFG2: ECAN™ MODULE BAUD RATE CONFIGURATION REGISTER 2

| U-0    | R/W-x  | U-0 | U-0 | U-0 | R/W-x | R/W-x       | R/W-x |
|--------|--------|-----|-----|-----|-------|-------------|-------|
| —      | WAKFIL | —   | _   | _   | :     | SEG2PH<2:0> |       |
| bit 15 |        |     |     |     |       |             | bit 8 |

| R/W-x    | R/W-x | R/W-x       | R/W-x | R/W-x | R/W-x | R/W-x      | R/W-x |
|----------|-------|-------------|-------|-------|-------|------------|-------|
| SEG2PHTS | SAM   | SEG1PH<2:0> |       |       |       | PRSEG<2:0> |       |
| bit 7    |       |             |       |       |       |            | bit 0 |

| Legend:                                         |                               |                                            |                              |                        |  |  |  |  |
|-------------------------------------------------|-------------------------------|--------------------------------------------|------------------------------|------------------------|--|--|--|--|
| R = Readabl                                     | e bit                         | W = Writable bit                           | U = Unimplemented bit,       | read as '0'            |  |  |  |  |
| -n = Value at                                   | POR                           | '1' = Bit is set                           | '0' = Bit is cleared         | x = Bit is unknown     |  |  |  |  |
| bit 15                                          | Unimplem                      | ented: Read as '0'                         |                              |                        |  |  |  |  |
| bit 14                                          | -                             | Select CAN bus Line Filter                 | for Wake-up hit              |                        |  |  |  |  |
| bit 14                                          |                               | AN bus line filter for wake-u              | I                            |                        |  |  |  |  |
| 0 = CAN bus line filter is not used for wake-up |                               |                                            |                              |                        |  |  |  |  |
| bit 13-11                                       | 11 Unimplemented: Read as '0' |                                            |                              |                        |  |  |  |  |
| bit 10-8                                        | SEG2PH<                       | 2:0>: Phase Buffer Segme                   | ent 2 bits                   |                        |  |  |  |  |
|                                                 | 111 = Length is 8 x TQ        |                                            |                              |                        |  |  |  |  |
|                                                 | 000 <b>= Len</b> g            | 000 = Length is 1 x TQ                     |                              |                        |  |  |  |  |
| bit 7                                           | SEG2PHT                       | S: Phase Segment 2 Time                    | Select bit                   |                        |  |  |  |  |
|                                                 | •                             | programmable<br>um of SEG1PH bits or Infor | rmation Processing Time (IPT | ) whichever is greater |  |  |  |  |
| bit 6                                           |                               | nple of the CAN bus Line bi                | 5 (                          | ,,e.e.e.e.g.eete.      |  |  |  |  |
|                                                 | 1 = Bus lin                   | e is sampled three times at                | the sample point             |                        |  |  |  |  |
|                                                 | 0 = Bus lin                   | e is sampled once at the sa                | ample point                  |                        |  |  |  |  |
| bit 5-3                                         | SEG1PH<                       | 2:0>: Phase Buffer Segme                   | ent 1 bits                   |                        |  |  |  |  |
|                                                 |                               | gth is 8 x TQ                              |                              |                        |  |  |  |  |
|                                                 | 000 <b>= Len</b> g            | gth is 1 x TQ                              |                              |                        |  |  |  |  |
| bit 2-0                                         |                               | :0>: Propagation Time Seg                  | gment bits                   |                        |  |  |  |  |
|                                                 |                               | gth is 8 x TQ                              |                              |                        |  |  |  |  |
|                                                 | 000 = Leng                    | gth is 1 x TQ                              |                              |                        |  |  |  |  |

© 2009-2012 Microchip Technology Inc.

## REGISTER 19-13: CIBUFPNT2: ECAN™ MODULE FILTER 4-7 BUFFER POINTER REGISTER

| R/W-0         | R/W-0         | R/W-0                                                   | R/W-0         | R/W-0               | R/W-0          | R/W-0           | R/W-0 |
|---------------|---------------|---------------------------------------------------------|---------------|---------------------|----------------|-----------------|-------|
|               | F7BP          | <3:0>                                                   |               |                     | F6BP           | ><3:0>          |       |
| bit 15        |               |                                                         |               |                     |                |                 | bit   |
| R/W-0         | R/W-0         | R/W-0                                                   | R/W-0         | R/W-0               | R/W-0          | R/W-0           | R/W-0 |
|               | F5BP          | <3:0>                                                   |               |                     | F4BP           | ><3:0>          |       |
| bit 7         |               |                                                         |               |                     |                |                 | bit   |
| Legend:       |               |                                                         |               |                     |                |                 |       |
| R = Readable  | e bit         | W = Writable                                            | bit           | U = Unimplemer      | nted bit, read | l as '0'        |       |
| -n = Value at | POR           | '1' = Bit is set                                        |               | '0' = Bit is cleare |                | x = Bit is unkr | nown  |
| bit 15-12     | 1111 = Filter | RX Buffer Writt<br>hits received ir<br>hits received ir | n RX FIFO bu  | uffer               |                |                 |       |
|               | •             |                                                         |               |                     |                |                 |       |
|               |               | hits received ir                                        |               |                     |                |                 |       |
| bit 11-8      | 1111 = Filter | RX Buffer Writt<br>hits received ir<br>hits received ir | n RX FIFO bu  | uffer               |                |                 |       |
|               | •             |                                                         |               |                     |                |                 |       |
|               |               | hits received ir hits received ir                       |               |                     |                |                 |       |
| bit 7-4       | 1111 = Filter | RX Buffer Writt<br>hits received ir<br>hits received ir | n RX FIFO bu  | uffer               |                |                 |       |
|               | •             |                                                         |               |                     |                |                 |       |
|               |               | hits received ir hits received ir                       |               |                     |                |                 |       |
| bit 3-0       | 1111 = Filter | RX Buffer Writt<br>hits received ir<br>hits received ir | n RX FIFO bu  | uffer               |                |                 |       |
|               | •             |                                                         |               |                     |                |                 |       |
|               | 0001 = Filter | hits received ir                                        | n RX Buffer 1 |                     |                |                 |       |

| АС СНА       | AC CHARACTERISTICS |                                |              | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |           |           |                                                  |  |  |
|--------------|--------------------|--------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------------------------------------------|--|--|
| Param<br>No. | Symbol             | Characteristic                 | Min.         | Тур                                                                                                                                                                                                                                                                                     | Max.      | Units     | Conditions                                       |  |  |
|              |                    | ADC Accuracy (10-bit Mode      | e) – Meas    | uremen                                                                                                                                                                                                                                                                                  | ts with e | xternal   | VREF+/VREF-                                      |  |  |
| AD20b        | Nr                 | Resolution                     | 1            | 0 data bi                                                                                                                                                                                                                                                                               | its       | bits      |                                                  |  |  |
| AD21b        | INL                | Integral Nonlinearity          | -1.5         | —                                                                                                                                                                                                                                                                                       | +1.5      | LSb       | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |  |
| AD22b        | DNL                | Differential Nonlinearity      | >-1          | —                                                                                                                                                                                                                                                                                       | <1        | LSb       | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |  |
| AD23b        | Gerr               | Gain Error                     | —            | 3                                                                                                                                                                                                                                                                                       | 6         | LSb       | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |  |
| AD24b        | EOFF               | Offset Error                   | —            | 2                                                                                                                                                                                                                                                                                       | 5         | LSb       | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |  |
| AD25b        | —                  | Monotonicity                   |              |                                                                                                                                                                                                                                                                                         | _         | —         | Guaranteed                                       |  |  |
|              |                    | ADC Accuracy (10-bit Mode      | e) – Meas    | uremen                                                                                                                                                                                                                                                                                  | ts with i | nternal V | VREF+/VREF-                                      |  |  |
| AD20b        | Nr                 | Resolution                     | 10 data bits |                                                                                                                                                                                                                                                                                         |           | bits      |                                                  |  |  |
| AD21b        | INL                | Integral Nonlinearity          | -1           |                                                                                                                                                                                                                                                                                         | +1        | LSb       | VINL = AVSS = 0V, AVDD = 3.6V                    |  |  |
| AD22b        | DNL                | Differential Nonlinearity      | >-1          |                                                                                                                                                                                                                                                                                         | <1        | LSb       | VINL = AVSS = 0V, AVDD = 3.6V                    |  |  |
| AD23b        | Gerr               | Gain Error                     | —            | 7                                                                                                                                                                                                                                                                                       | 15        | LSb       | VINL = AVSS = 0V, AVDD = 3.6V                    |  |  |
| AD24b        | EOFF               | Offset Error                   | —            | 3                                                                                                                                                                                                                                                                                       | 7         | LSb       | VINL = AVSS = 0V, AVDD = 3.6V                    |  |  |
| AD25b        | —                  | Monotonicity                   | —            |                                                                                                                                                                                                                                                                                         | _         | —         | Guaranteed                                       |  |  |
|              |                    | Dynamic                        | Performa     | ance (10                                                                                                                                                                                                                                                                                | -bit Mod  | e)        |                                                  |  |  |
| AD30b        | THD                | Total Harmonic Distortion      | —            | —                                                                                                                                                                                                                                                                                       | -64       | dB        | —                                                |  |  |
| AD31b        | SINAD              | Signal to Noise and Distortion | 57           | 58.5                                                                                                                                                                                                                                                                                    | _         | dB        | _                                                |  |  |
| AD32b        | SFDR               | Spurious Free Dynamic<br>Range | 72           | —                                                                                                                                                                                                                                                                                       | —         | dB        | _                                                |  |  |
| AD33b        | Fnyq               | Input Signal Bandwidth         |              |                                                                                                                                                                                                                                                                                         | 550       | kHz       | _                                                |  |  |
| AD34b        | ENOB               | Effective Number of Bits       | 9.16         | 9.4                                                                                                                                                                                                                                                                                     |           | bits      | —                                                |  |  |

## TABLE 24-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)<sup>(1)</sup>

Note 1: Injection currents > |0| can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

## QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC<sup>32</sup> logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

### ISBN: 978-1-62076-345-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.