

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp506at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All PIC24HJXXXGPX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

PIC24HJXXXGPX06A/X08A/X10A devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 3	CNIF: Input Change Notification Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

bit 2	C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	<pre>SPI2EIE: SPI2 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled</pre>

U-0	R/W-1	R/W-0	R/W-0	[]_0	R/W-1	R/W-0	R/W/-0
_		U2TXIP<2:0>		_		U2RXIP<2:0>	
bit 15					I		bit 8
L							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>				T5IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable k	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 15	Unimplome	ntod: Pood as '	,,				
bit 14_12			mitter Interru	int Priority hite			
	111 = Interr	rupt is priority 7 (h	highest priorit	ty interrupt)			
	•		- '	/			
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8	U2RXIP<2:	0>: UART2 Rece	iver Interrupt	Priority bits			
	111 = Interr	rupt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
h:+ 7	000 = Interr	upt source is disa	abled				
		entea: Read as 'C) unt 0 Drianiti	hita			
DIL 0-4	$\frac{111}{111} = \frac{111}{1100}$	>: External Intern	upi z Priority viabest priorit	UIIS			
	•		iigiiest priorit	y menupi)			
	•						
	•	unt in priority 4					
	000 = Interr	upt is priority 1 upt source is disa	abled				
bit 3	Unimpleme	ented: Read as '0)'				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				

NOTES:

REGISTER 8-1:	DMAxCON: DMA CHANNEL x CONTROL REGISTER
---------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	_	_	-
bit 15	1	I	1	1			bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	—	AMOD	E<1:0>	_		MODE	<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		0' = Bit is cle	eared	x = Bit is unkr	nown
		al Frabla bit					
DIL 15	1 = Channel e						
	0 = Channel o	disabled					
bit 14	SIZE: Data Tr	ansfer Size bit					
	1 = Byte						
	0 = Word						
bit 13	DIR: Transfer	Direction bit (s	source/destina	ation bus selec	t)		
	1 = Read fron 0 = Read fron	n DMA RAM ao n peripheral ad	ddress, write t dress, write to	o peripheral a DMA RAM a	ddress ddress		
bit 12	HALF: Early E	Block Transfer	Complete Inte	errupt Select b	it		
	1 = Initiate blo 0 = Initiate blo	ock transfer co ock transfer co	mplete interru mplete interru	pt when half o pt when all of t	f the data has be the data has bee	een moved en moved	
bit 11	NULLW: Null	Data Periphera	al Write Mode	Select bit			
	 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation 						ear)
bit 10-6	Unimplemen	ted: Read as '	0'				
bit 5-4	AMODE<1:0>	: DMA Chann	el Operating N	Aode Select bi	ts		
	11 = Reserve	d					
	10 = Peripher	al Indirect Add	ressing mode				
	01 = Register	Indirect without Indirect with F	ost-Incremen	t mode			
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1-0	MODE<1:0>:	DMA Channel	Operating Mo	ode Select bits			
	11 = One-Sho	ot, Ping-Pong r	nodes enable	d (one block tr	ansfer from/to e	ach DMA RAM	buffer)
	10 = Continuo	ous, Ping-Pong	modes enab	led			
	01 = One-Sho	ous. Pina-Pong r	modes disable	led			
			,				

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAE)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—		—	—	CNT<	9:8> (2)
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	:7:0> (2)			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - 2: Number of DMA transfers = CNT<9:0> + 1.

bit 7

bit 0

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD)R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS

EXAMPLE

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: PIC24HJXXXGPX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	-
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: ECAN1 Module Disable bit 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit⁽¹⁾
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled
- **Note 1:** PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins multiplexed with ANx will be in Digital mode.

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	-	—	—	—	—	AMSK9	AMSK8
bit 15		-			•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7		-			•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the			
	product page using the link above, enter			
	this URL in your browser:			
	http://www.microchip.com/wwwproducts/			
	Devices.aspx?dDocName=en546061			

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 18-2: Uz	xSTA: UARTx STATUS AN	ID CONTROL REGISTER
-------------------	-----------------------	---------------------

R/M-0	R/\\/_0	R/\\/_0	11-0	R/W-0 HC	R/\\/_0	R-0	R-1
UTXISEI 1				UTXBRK		UTXBE	TRMT
bit 15	U T/IIII	OTAIOLLO		OTABLIC	OTALI	0 I/(BI	bit 8
2.1.10							
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7				1			bit 0
Legend:		HC = Hardwar	e cleared			C = Clear onl	y bit
R = Readable	bit	W = Writable b	pit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
 bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits = Reserved; do not use = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed = Interrupt when a character is transferred to the Transmit Shift Register; all transmit operations are completed = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) bit 14 UTXINV: Transmit Polarity Inversion bit If IREN = 0: = UxTX Idle state is '0' = UxTX Idle state is '1' If IREN = 1: I = IrDA[®] encoded UxTX Idle state is '1' 							esult, the ansmit s there is
bit 12	Unimplement	ted: Read as 'o)'				
bit 11	UTXBRK: Tra	insmit Break bit	t				
bit 10	 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed bit 10 UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx a = Transmit disabled, on y panding transmission is abouted and buffer is const. It TX sin controlled by UARTx 						
	by port.						
bit 9	UTXBF: Trans 1 = Transmit 0 = Transmit	smit Buffer Full buffer is full buffer is not ful	Status bit (re	ad-only) e more charact	er can be writter	٦	
bit 8	TRMT: Transr	nit Shift Registe	er Empty bit (read-only)			
	 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed 0 = Transmit Shift Register is not empty, a transmission is in progress or queued 						
bit 7-6	 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters. 						

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 19-20: CIRXMnSID: ECAN™ MODULE ACCEPTANCE FILTER MASK n STANDARD **IDENTIFIER**

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			SID	<10:3>					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
	SID<2:0>		—	MIDE	—	EID<1	17:16>		
bit 7							bit 0		
Legend:]		
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-5	SID<10:0>: \$	Standard Identi	fier bits						
	1 = Include bi	it SIDx in filter	comparison						
	0 = Bit SIDx i	s don't care in	filter comparis	son					
bit 4	Unimplemen	ted: Read as '	0'						
bit 3	MIDE: Identi	fier Receive Mo	ode bit						
	1 = Match or	nly message typ	bes (standard	l or extended a	ddress) that cor	respond to EXI	DE bit in filter		
	0 = Match ei	ther standard o	or extended a	ddress messag	e if filters match				
	(i.e., if (F	ilter SID) = (Me	essage SID) o	or if (Filter SID/I	⊢ID) = (Messag	e SID/EID))			
bit 2	Unimplemen	ted: Read as '	0'						
bit 1-0	EID<17:16>:	Extended Ider	ntifier bits						
	1 = Include b	oit EIDx in filter	comparison						
	0 = Bit EIDx is don't care in filter comparison								

REGISTER 19-21: CIRXMnEID: ECAN™ TECHNOLOGY ACCEPTANCE FILTER MASK n EXTENDED **IDENTIFIER**

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bi	it	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	ts Conditions				
Idle Current (II	DLE): Core OF	F Clock ON	Base Curren	t ⁽¹⁾				
DC40d	3	25	mA	-40°C				
DC40a	3	25	mA	+25°C	7			
DC40b	3	25	mA	+85°C	3.3V	TO MIES		
DC40c	3	25	mA	+125°C				
DC41d	4	25	mA	-40°C				
DC41a	5	25	mA	+25°C	3.31/	16 MIDS		
DC41b	6	25	mA	+85°C	5.5V	TO MILE S		
DC41c	6	25	mA	+125°C				
DC42d	8	25	mA	-40°C				
DC42a	9	25	mA	+25°C	2.21/			
DC42b	10	25	mA	+85°C	5.5V	20 MIF 3		
DC42c	10	25	mA	+125°C				
DC43a	15	25	mA	+25°C				
DC43d	15	25	mA	-40°C	2 2)/	20 MIDS		
DC43b	15	25	mA	+85°C	3.3V	30 MIF 3		
DC43c	15	25	mA	+125°C				
DC44d	16	25	mA	-40°C				
DC44a	16	25	mA	+25°C	3 3\/			
DC44b	16	25	mA	+85°C	5.5 V	40 MIF 3		
DC44c	16	25	mA	+125°C				

TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- JTAG is disabled
- **2:** These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 25-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Reference Inputs									
HAD08	IREF	Current Drain	_	250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1		

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 25-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾								
AD23a	Gerr	Gain Error	_	5	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24a	EOFF	Offset Error	_	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with in	ternal \	/ref+/Vref- ⁽¹⁾		
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	Eoff	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
	Dynamic Performance (12-bit Mode) ⁽²⁾								
HAD33a	Fnyq	Input Signal Bandwidth	—		200	kHz	—		

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 25-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾							
AD23b	Gerr	Gain Error		3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	-	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
	AD	C Accuracy (12-bit Mode)	– Measu	rement	s with int	ternal V	REF+/VREF- ⁽¹⁾	
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	-	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
		Dynamic Pe	erformar	nce (10-l	oit Mode)	(2)		
HAD33b	Fnyq	Input Signal Bandwidth	—	_	400	kHz	_	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

Revision D (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description				
Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers"	Updated the Recommended Minimum Connection (see Figure 2-1).				
Section 9.0 "Oscillator Configuration"	Updated the COSC<2:0> and NOSC<2:0> bit value definitions for '001' (see Register 9-1).				
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the Analog-to-Digital Conversion Clock Period Block Diagram (see Figure 20-2).				
Section 21.0 "Special Features"	Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 21-1).				
Section 24.0 "Electrical Characteristics"	Updated "Absolute Maximum Ratings".				
	Updated Operating MIPS vs. Voltage (see Table 24-1).				
	Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 24-4).				
	Updated the notes in the following tables:				
	• Table 24-5				
	Table 24-6				
	• Table 24-7				
	Table 24-8				
	Updated the I/O Pin Output Specifications (see Table 24-10).				
	Updated the Conditions for parameter BO10 (see Table 24-11).				
	Updated the Conditions for parameters D136b, D137b, and D138b (TA = 150°C) (see Table 24-12).				
Section 25.0 "High Temperature Electrical	Updated "Absolute Maximum Ratings".				
Characteristics"	Updated the I/O Pin Output Specifications (see Table 25-6).				
	Removed Table 25-7: DC Characteristics: Program Memory.				