

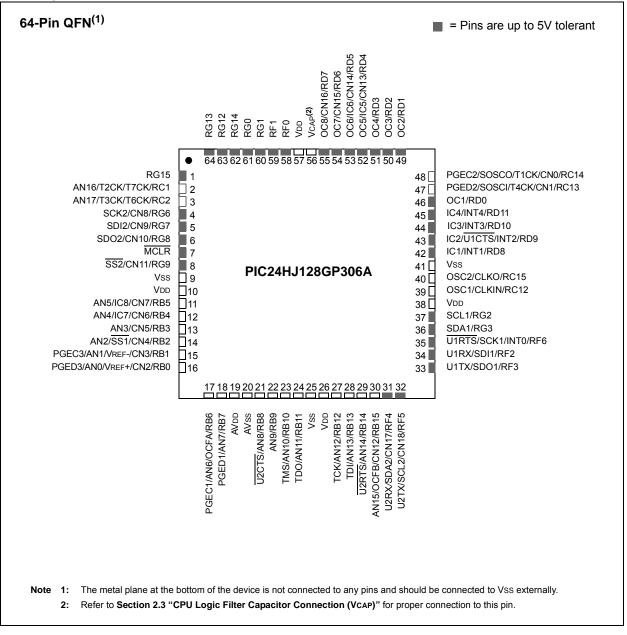
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

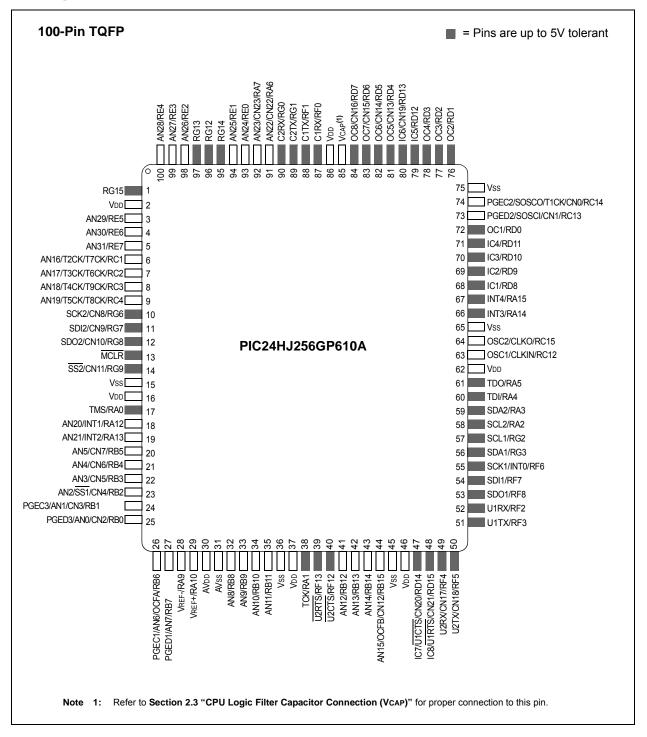
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp510a-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

© 2009-2012 Microchip Technology Inc.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the PIC24HJXXXGPX06A/X08A/X10A family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

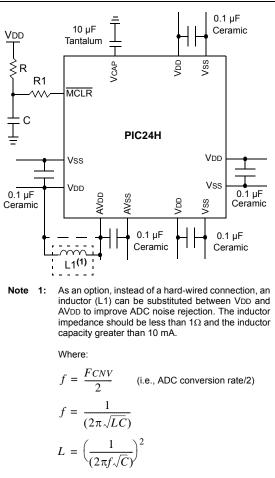
- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors") VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The AVDD		and AVss		pins	mu	st be
	connected		indep	endent	of	the	ADC
	volta	ge refe					


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

2.2.1 TANK CAPACITORS

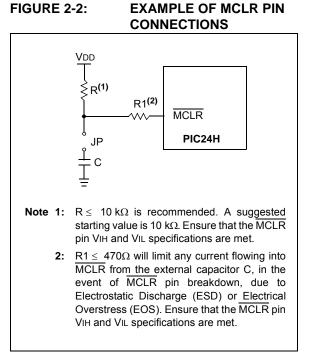
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including MCUs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 24.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 21.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- · Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

TABLE	4-6:	TIME	R REG	ISTER N	IAP													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register										0000					
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON		TSIDL		_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106		Timer2 Register											0000				
TMR3HLD	0108						Tim	ner3 Holding	Register (fo	r 32-bit time	operations c	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T3CON	0112	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116	Timer5 Holding Register (for 32-bit operations only)									xxxx							
TMR5	0118		Timer5 Register									0000						
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	—	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124						-	Timer7 Hold	ing Register	(for 32-bit op	perations only	/)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T7CON	012E	TON		TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132						-	Timer9 Hold	ing Register	(for 32-bit op	perations only	/)						xxxx
TMR9	0134								Timer9	Register								0000
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period F	Register 9								FFFF
T8CON	013A	TON	_	TSIDL	—	—	—	—	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T9CON	013C	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
L			har an Daa								Dire Liberte al avai							

. . TIMED DEGIGTED MAD

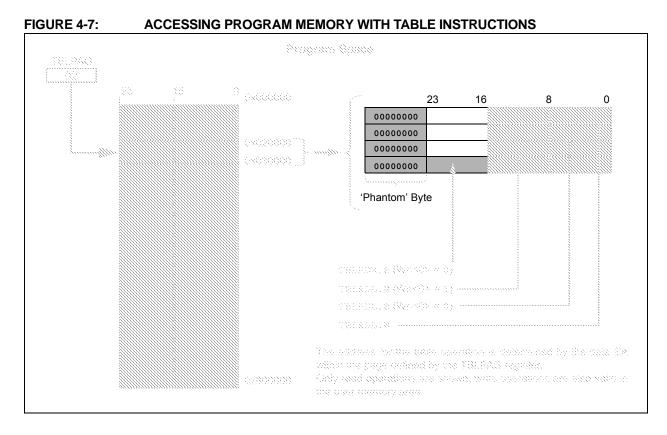
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.


 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

4.4.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 4-8), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

When CORCON < 2 > = 1 and EA < 15 > = 1: **Program Space Data Space PSVPAG** 15 0 0x000000 0x0000 02 Data EA<14:0> 0x010000 0x018000 The data in the page designated by **PSVPAG** is mapped into the upper half of the data memory 0x8000 space... **PSV** Area ...while the lower 15 bits of the EA specify an exact address within 0xFFFF the PSV area. This corresponds exactly to the same lower 15 bits of the actual program space address. 0x800000

FIGURE 4-8: PROGRAM SPACE VISIBILITY OPERATION

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC24HJXXXGPX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

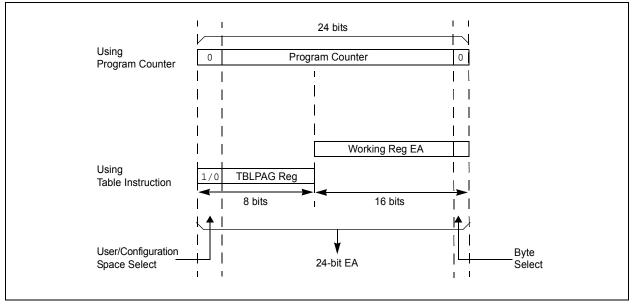
The PIC24HJXXXGPX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		U2TXIP<2:0>				U2RXIP<2:0>							
bit 15							bit						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
		INT2IP<2:0>		_		T5IP<2:0>							
bit 7					1		bit						
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	id as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown						
bit 15	Unimpleme	ented: Read as '	כי										
bit 14-12		0>: UART2 Trans rupt is priority 7 (I											
	•												
	• 001 = Interrupt is priority 1												
		upt source is dis	abled										
bit 11	Unimpleme	ented: Read as '	o'										
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits												
	111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	001 = Interrupt is priority 1												
		upt source is dis											
bit 7	-	ented: Read as '											
bit 6-4		>: External Interr											
	111 = Interr	rupt is priority 7 (I	nighest priori	ty interrupt)									
	•												
	•												
		upt is priority 1	ablad										
bit 3		upt source is dis ented: Read as 'o											
bit 2-0	-	Timer5 Interrupt											
DIL 2-0		upt is priority 7 (I	-	tv interrupt)									
	•	арт ю р. ю. т.) · (.	ingineer priori	()									
	•												
	•												
	()() = Interr	upt is priority 1											

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are								
	initialized, such that all user interrupt								
	sources are assigned to priority level 4.								

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value 0x0E with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1						
_	_	_	—		LSTC	+<3:0>							
bit 15							bit 8						
	D 0				D 0		D 0						
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0						
bit 7							bit 0						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown						
bit 15-12	Unimplemen	ted: Read as '	0'										
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active b	oits									
			s occurred sin	ce system Res	et								
	1110-1000 =	Reserved		annol 7									
		0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5											
		0100 = Last data transfer was by DMA Channel 4											
	0011 = Last data transfer was by DMA Channel 3												
	0010 = Last data transfer was by DMA Channel 2 0001 = Last data transfer was by DMA Channel 1												
bit 7	0000 = Last data transfer was by DMA Channel 0 PPST7: Channel 7 Ping-Pong Mode Status Flag bit												
		B register selec											
		A register selec											
bit 6		inel 6 Ping-Por	-	s Flag bit									
		B register select A register select											
bit 5	PPST5: Chan	nel 5 Ping-Por	ng Mode Statu	s Flag bit									
	1 = DMA5STB register selected												
		A register selec											
bit 4		inel 4 Ping-Por	-	s Flag bit									
		B register select A register select											
bit 3	PPST3: Chan	nel 3 Ping-Por	ng Mode Statu	s Flag bit									
		B register selec A register selec											
bit 2	 DMA3STA register selected PPST2: Channel 2 Ping-Pong Mode Status Flag bit 												
	1 = DMA2ST	B register selec	cted										
		A register selec		— , ,,,									
bit 1		inel 1 Ping-Por	-	s Flag bit									
		B register seled A register seled											
bit 0	PPST0: Chan	nel 0 Ping-Por	ng Mode Statu	s Flag bit									
		B register seled	-										

Bit Field	Register	RTSP Effect	Description			
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) x11 = No Secure program Flash segment			
			Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE			
			Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE			
			Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE			
			(FOR 64K DEVICES) x11 = No Secure program Flash segment			
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE			
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE			
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE			
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM			
GSS<1:0>	FGS	Immediate				
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected			

TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 21-2:	CONFIGURATION BITS DESCRIPTION (CONTINUED)							
Bit Field	Register	RTSP Effect	Description					
IESO	FOSCSEL	Immediate	Internal External Start-up Option bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source					
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Reserved 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator					
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled					
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin					
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode					
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) 					
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode					
PLLKEN	FWDT	Immediate	PLL Lock Enable bit 1 = Clock switch to PLL source will wait until the PLL lock signal is valid. 0 = Clock switch will not wait for the PLL lock signal.					
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32					
WDTPOST	FWDT	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •					

TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Base Instr #	Assembly Mnemonic				# of Words	# of Cycles	Status Flags Affected
12 B'	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = Ī	1	1	N,Z
		COM	f,WREG	WREG = Ī	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
	-	CP	- Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb <u>w</u> ith Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
32	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
33	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
34	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None

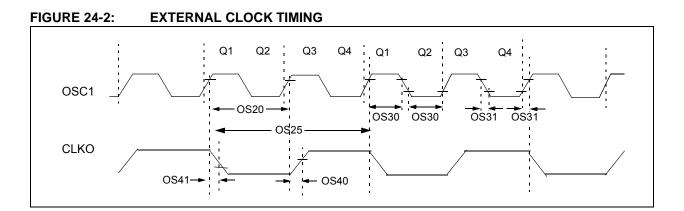

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VcAP, SOSCI, SOSCO, and RB11	
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾	
DI60c	∑ ІІСТ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \Sigma$ IICT	

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

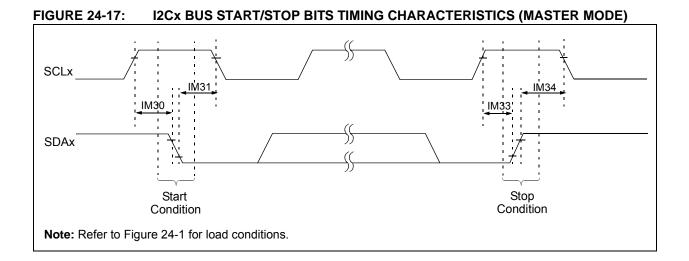
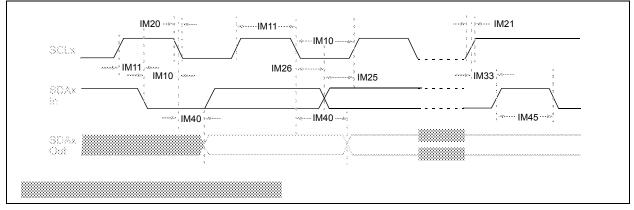

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC	
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	_	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25		DC	ns	—	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	_	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	<u> </u>	5.2	—	ns	—	
OS41	TckF	CLKO Fall Time ⁽³⁾		5.2	_	ns	—	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C	

TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS


Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode Tcy/2 (BRG + 1)			μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	_	
			1 MHz mode ⁽²⁾	mode ⁽²⁾ TCY/2 (BRG + 1)		μS	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	—	
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	_	300	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽²⁾	_	300	ns		
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	_	
			400 kHz mode	100	—	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	μS	—	
			400 kHz mode	0	0.9	μS	1	
			1 MHz mode ⁽²⁾	0.2	—	μS		
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period the	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated	
IM33	Tsu:sto	ro Stop Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	_	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	—	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns		
IM40	TAA:SCL	CL Output Valid From Clock	100 kHz mode	—	3500	ns	—	
			400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μS	transmission can start	
IM50	Св	Bus Capacitive L	oading	_	400	pF	—	
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	See Note 3	

TABLE 24-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	its	bits		
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	_	Monotonicity			_	—	Guaranteed	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-	
AD20b	Nr	Resolution	1	10 data bits		bits		
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity	—		_	—	Guaranteed	
		Dynamic	Performa	ance (10	-bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_	
AD32b	SFDR	Spurious Free Dynamic Range	72	—	—	dB	_	
AD33b	Fnyq	Input Signal Bandwidth			550	kHz	_	
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits	—	

TABLE 24-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽¹⁾

Note 1: Injection currents > |0| can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

25.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 24.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 24.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias ⁽⁴⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁵⁾	
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(5)}$	-0.3V to 5.6V
Voltage on VCAP with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽²⁾	60 mA
Maximum junction temperature	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	2 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	4 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	8 mA
Maximum current sunk by all ports combined	10 mA
Maximum current sourced by all ports combined ⁽²⁾	10 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
- **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins.
- 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
- 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.