

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Details	
Product Status	Obsolete
Туре	Fixed Point
Interface	Synchronous Serial Port (SSP)
Clock Rate	25MHz
Non-Volatile Memory	External
On-Chip RAM	6kB
Voltage - I/O	5.00V
Voltage - Core	5.00V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	68-BCPGA
Supplier Device Package	68-PGA (27.89x27.89)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2101bg-100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The ADSP-216x series are memory-variant versions of the ADSP-2101 and ADSP-2103 that contain factory-programmed on-chip ROM program memory. These devices offer different amounts of on-chip memory for program and data storage. Table II shows the features available in the ADSP-216x series of custom ROM-coded processors.

The ADSP-216x products eliminate the need for an external boot EPROM in your system, and can also eliminate the need for any external program memory by fitting the entire application program in on-chip ROM. These devices thus provide an excellent option for volume applications where board space and system cost constraints are of critical concern.

Development Tools

The ADSP-21xx processors are supported by a complete set of tools for system development. The ADSP-2100 Family Development Software includes C and assembly language tools that allow programmers to write code for any of the ADSP-21xx processors. The ANSI C compiler generates ADSP-21xx assembly source code, while the runtime C library provides ANSI-standard and custom DSP library routines. The ADSP-21xx assembler produces object code modules which the linker combines into an executable file. The processor simulators provide an interactive instruction-level simulation with a reconfigurable, windowed user interface. A PROM splitter utility generates PROM programmer compatible files.

EZ-ICE[®] in-circuit emulators allow debugging of ADSP-21xx systems by providing a full range of emulation functions such as modification of memory and register values and execution breakpoints. EZ-LAB[®] demonstration boards are complete DSP systems that execute EPROM-based programs.

The EZ-Kit Lite is a very low-cost evaluation/development platform that contains both the hardware and software needed to evaluate the ADSP-21xx architecture.

Additional details and ordering information is available in the *ADSP-2100 Family Software & Hardware Development Tools* data sheet (ADDS-21xx-TOOLS). This data sheet can be requested from any Analog Devices sales office or distributor.

Additional Information

This data sheet provides a general overview of ADSP-21xx processor functionality. For detailed design information on the architecture and instruction set, refer to the *ADSP-2100 Family User's Manual*, available from Analog Devices.

ARCHITECTURE OVERVIEW

Figure 1 shows a block diagram of the ADSP-21xx architecture. The processors contain three independent computational units: the ALU, the multiplier/accumulator (MAC), and the shifter. The computational units process 16-bit data directly and have provisions to support multiprecision computations. The ALU performs a standard set of arithmetic and logic operations; division primitives are also supported. The MAC performs single-cycle multiply, multiply/add, and multiply/subtract operations. The shifter performs logical and arithmetic shifts, normalization, denormalization, and derive exponent operations. The shifter can be used to efficiently implement numeric format control including multiword floating-point representations.

The internal result (R) bus directly connects the computational units so that the output of any unit may be used as the input of any unit on the next cycle.

A powerful program sequencer and two dedicated data address generators ensure efficient use of these computational units. The sequencer supports conditional jumps, subroutine calls, and returns in a single cycle. With internal loop counters and loop stacks, the ADSP-21xx executes looped code with zero overhead—no explicit jump instructions are required to maintain the loop.

Two data address generators (DAGs) provide addresses for simultaneous dual operand fetches (from data memory and program memory). Each DAG maintains and updates four address pointers. Whenever the pointer is used to access data (indirect addressing), it is post-modified by the value of one of four modify registers. A length value may be associated with each pointer to implement automatic modulo addressing for circular buffers. The circular buffering feature is also used by the serial ports for automatic data transfers to (and from) onchip memory.

Efficient data transfer is achieved with the use of five internal buses:

- Program Memory Address (PMA) Bus
- Program Memory Data (PMD) Bus
- Data Memory Address (DMA) Bus
- Data Memory Data (DMD) Bus
- Result (R) Bus

The two address buses (PMA, DMA) share a single external address bus, allowing memory to be expanded off-chip, and the two data buses (PMD, DMD) share a single external data bus. The BMS, DMS, and PMS signals indicate which memory space is using the external buses.

Program memory can store both instructions and data, permitting the ADSP-21xx to fetch two operands in a single cycle, one from program memory and one from data memory. The processor can fetch an operand from on-chip program memory and the next instruction in the same cycle.

The memory interface supports slow memories and memorymapped peripherals with programmable wait state generation. External devices can gain control of the processor's buses with the use of the bus request/grant signals (\overline{BR} , \overline{BG}).

ĴĹ INSTRUCTION FLAGS PROGRAM DATA (ADSP-2111 Only REGISTER MEMOR) MEMORY воот DATA DATA SRAM SRAM ADDRESS ADDRESS ADDRESS TIMER or RON PROGRAM SEQUENCER GENERATOR GENERATOR GENERATOR #2 PMA BUS PMA BUS 14 EXTERNAL MUX ADDRESS DMA BUS DMA BUS 14 BUS PMD BUS PMD BUS 24 EXTERNAL BUS EXCHANGE MUX DATA DMD BUS BUS DMD BUS 16 ſ INPUT REGS INPUT REGS COMPANDING CIRCUITRY INPUT REGS HOST PORT SHIFTER CONTROL ALU MAC EXTERNAL TRANSMIT REG TRANSMIT REG HOST PORT OUTPUT REGS OUTPUT REGS OUTPUT REGS RECEIVE REG RECEIVE REG 16 BUS HOST SERIAL ٦Ļ ٦Ļ ٦Ļ SERIAI PORT PORT 0 PORT 1 DATA (Not on ADSP-2105) R Bus HOST INTERFACE PORT ۶Ł (ADSP-2111 Only)

Figure 1. ADSP-21xx Block Diagram

One bus grant execution mode (GO Mode) allows the ADSP-21xx to continue running from internal memory. A second execution mode requires the processor to halt while buses are granted.

Each ADSP-21xx processor can respond to several different interrupts. There can be up to three external interrupts, configured as edge- or level-sensitive. Internal interrupts can be generated by the timer, serial ports, and, on the ADSP-2111, the host interface port. There is also a master **RESET** signal.

Booting circuitry provides for loading on-chip program memory automatically from byte-wide external memory. After reset, three wait states are automatically generated. This allows, for example, a 60 ns ADSP-2101 to use a 200 ns EPROM as external boot memory. Multiple programs can be selected and loaded from the EPROM with no additional hardware.

The data receive and transmit pins on SPORT1 (Serial Port 1) can be alternatively configured as a general-purpose input flag and output flag. You can use these pins for event signalling to and from an external device. The ADSP-2111 has three additional flag outputs whose states are controlled through software.

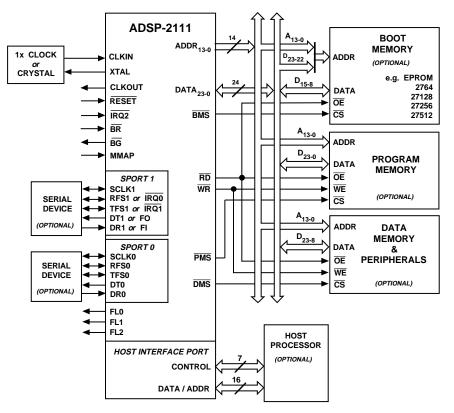
A programmable interval timer can generate periodic interrupts. A 16-bit count register (TCOUNT) is decremented every n cycles, where n-1 is a scaling value stored in an 8-bit register (TSCALE). When the value of the count register reaches zero, an interrupt is generated and the count register is reloaded from a 16-bit period register (TPERIOD).

Serial Ports

The ADSP-21xx processors include two synchronous serial ports ("SPORTs") for serial communications and multiprocessor communication. All of the ADSP-21xx processors have two serial ports (SPORT0, SPORT1) except for the ADSP-2105, which has only SPORT1.

ADSP-21xx

The serial ports provide a complete synchronous serial interface with optional companding in hardware. A wide variety of framed or frameless data transmit and receive modes of operation are available. Each SPORT can generate an internal programmable serial clock or accept an external serial clock.


Each serial port has a 5-pin interface consisting of the following signals:

Signal Name	Function
SCLK	Serial Clock (I/O)
RFS	Receive Frame Synchronization (I/O)
TFS	Transmit Frame Synchronization (I/O)
DR	Serial Data Receive
DT	Serial Data Transmit

The ADSP-21xx serial ports offer the following capabilities:

Bidirectional—Each SPORT has a separate, double-buffered transmit and receive function.

Flexible Clocking—Each SPORT can use an external serial clock or generate its own clock internally.

THE TWO MSBs OF THE DATA BUS (D $_{23\cdot22}$) ARE USED TO SUPPLY THE TWO MSBs OF THE BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.

Figure 5. ADSP-2111 System

The RESET input resets all internal stack pointers to the empty stack condition, masks all interrupts, and clears the MSTAT register. When RESET is released, the boot loading sequence is performed (provided there is no pending bus request and the chip is configured for booting, with MMAP = 0). The first instruction is then fetched from internal program memory location 0x0000.

Program Memory Interface

The on-chip program memory address bus (PMA) and on-chip program memory data bus (PMD) are multiplexed with the onchip data memory buses (DMA, DMD), creating a single external data bus and a single external address bus. The external data bus is bidirectional and is 24 bits wide to allow instruction fetches from external program memory. Program memory may contain code and data.

The external address bus is 14 bits wide. For the ADSP-2101, ADSP-2103, and ADSP-2111, these lines can directly address up to 16K words, of which 2K are on-chip. For the ADSP-2105 and ADSP-2115, the address lines can directly address up to 15K words, of which 1K is on-chip.

The data lines are bidirectional. The program memory select (\overline{PMS}) signal indicates accesses to program memory and can be used as a chip select signal. The write (\overline{WR}) signal indicates a write operation and is used as a write strobe. The read (\overline{RD}) signal indicates a read operation and is used as a read strobe or output enable signal.

The ADSP-21xx processors write data from their 16-bit registers to 24-bit program memory using the PX register to provide the lower eight bits. When the processor reads 16-bit data from 24-bit program memory to a 16-bit data register, the lower eight bits are placed in the PX register.

The program memory interface can generate 0 to 7 wait states for external memory devices; default is to 7 wait states after RESET.

Program Memory Maps

Program memory can be mapped in two ways, depending on the state of the MMAP pin. Figure 6 shows the two program memory maps for the ADSP-2101, ADSP-2103, and ADSP-2111. Figure 8 shows the program memory maps for the ADSP-2105 and ADSP-2115. Figures 7 and 9 show the program memory maps for the ADSP-2161/62 and ADSP-2163/ 64, respectively.

ADSP-2111-SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter		K Grade Min Max		B Grade Min Max		T Grade Min Max		Unit
$V_{DD} \ T_{AMB}$	Supply Voltage	4.50	5.50	4.50	5.50	4.50	5.50	V
	Ambient Operating Temperature	0	+70	-40	+85	-55	+125	°C

See "Environmental Conditions" for information on thermal specifications.

ELECTRICAL CHARACTERISTICS

Parar	neter	Test Conditions			
V _{IH}	Hi-Level Input Voltage ^{3, 5}	$@V_{DD} = max$	2.0		V
V _{IH}	Hi-Level CLKIN Voltage	$@V_{DD} = max$	2.2		V
V _{IL}	Lo-Level Input Voltage ^{I, 3}	$@V_{DD} = min$		0.8	V
V _{OH}	Hi-Level Output Voltage ^{2, 3, 7}	@ $V_{DD}^{}$ = min, I_{OH} = -0.5 mA	2.4		V
		@ $V_{DD} = min$, $I_{OH} = -100 \ \mu A^8$	V _{DD} – 0.3		V
Vol	Lo-Level Output Voltage ^{2, 3, 7}	$@V_{DD} = min, I_{OL} = 2 mA$		0.4	V
IH	Hi-Level Input Current ¹	$@V_{DD} = max, V_{IN} = V_{DD} max$		10	μA
IL	Lo-Level Input Current ¹	@ V _{DD} = max, V _{IN} = 0V		10	μA
OZH	Tristate Leakage Curren ⁴	@ V _{DD} = max, V _{IN} = V _{DD} max ⁶		10	μA
OZL	Tristate Leakage Current ⁴	@ $V_{DD} = \max$, $V_{IN} = 0V^6$		10	μA
\tilde{z}_{I}	Input Pin Capacitance ^{1, 8, 9}	@ $V_{IN} = 2.5 \text{ V}, f_{IN} = 1.0 \text{ MHz}, T_{AMB} = 25^{\circ}\text{C}$		8	pF
Σ_0	Output Pin Capacitance ^{4, 8, 9, 10}	@ $V_{IN} = 2.5 \text{ V}, f_{IN} = 1.0 \text{ MHz}, T_{AMB} = 25^{\circ}\text{C}$		8	pF

NOTES

¹Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HRW, HWR/HDS, HA2/ALE, HA1-0. ²Output pins: BG, PMS, DMS, BMS, RD, WR, A0-A13, CLKOUT, DT1, DT0, HACK, FL2-0.

³Bidirectional pins: D0-D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0, HD0-HD15/HAD0-HAD15. ⁴Tristatable pins: <u>A0-A13, D0-D23, PMS, DMS, BMS, RD, WR</u>, DT1, SCLK1, RSF1, TFS1, DT0, SCLK0, RFS0, TFS0, HD0-HD15/HAD0-HAD15. ⁵Input-only pins: RESET, IRQ2, BR, MMAP, DR1, DR0, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HRW, HWR/HDS, HA2/ALE, HA1-0. 6 0 V on \overline{BR} , CLKIN Active (to force tristate condition).

⁷Although specified for TTL outputs, all ADSP-2111 outputs are CMOS-compatible and will drive to V_{DD} and GND, assuming no dc loads.

⁸Guaranteed but not tested.

⁹Applies to ADSP-2111 PGA and PQFP packages.

¹⁰Output pin capacitance is the capacitive load for any three-stated output pin.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage0.3 V to +7 V
Input Voltage
Output Voltage Swing $\dots \dots \dots$
Operating Temperature Range (Ambient)55°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (10 sec) PGA+300°C
Lead Temperature (5 sec) PQFP +280°C

*Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (ADSP-2111)

SUPPLY CURRENT & POWER (ADSP-2111)

Para	meter	Test Conditions	Min	Max	Unit
I _{DD}	Supply Current (Dynamic) ¹	@ V_{DD} = max, t_{CK} = 50 ns ²		60	mA
		@ V_{DD} = max, t_{CK} = 60 ns ²		52	mA
		@ V_{DD} = max, t_{CK} = 76.9 ns ²		46	mA
I _{DD}	Supply Current (Idle) ^{1, 3}	@ $V_{DD} = max$, $t_{CK} = 50 ns$		18	mA
		@ $V_{DD} = max$, $t_{CK} = 60 ns$		16	mA
		@ $V_{DD} = max$, $t_{CK} = 76.9 ns$		14	mA

NOTES

¹Current reflects device operating with no output loads.

 $^{2}V_{IN} = 0.4 \text{ V} \text{ and } 2.4 \text{ V}.$

³Idle refers to ADSP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either V_{DD} or GND.

For typical supply current (internal power dissipation) figures, see Figure 17.

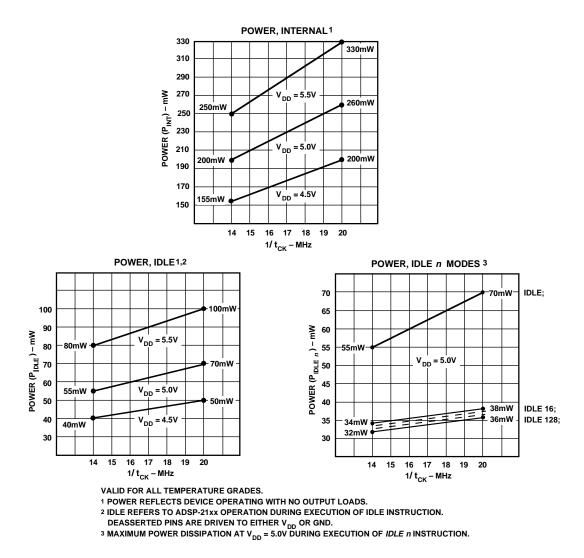
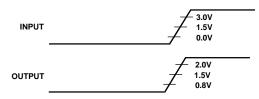



Figure 17. ADSP-2111 Power (Typical) vs. Frequency

SPECIFICATIONS (ADSP-2111)

TEST CONDITIONS

Figure 20 shows voltage reference levels for ac measurements.

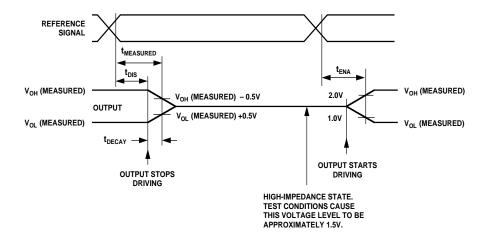
Figure 20. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

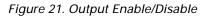
Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time (t_{DIS}) is the difference of $t_{MEASURED}$ and t_{DECAY} , as shown in Figure 21. The time $t_{MEASURED}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, t_{DECAY} , is dependent on the capacitative load, C_L , and the current load, i_L , on the output pin. It can be approximated by the following equation:

from which


$$t_{DIS} = t_{MEASURED} - t_{DECAY}$$


 $t_{DECAY} = \frac{C_L \times 0.5 V}{i_L}$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time (t_{ENA}) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 21. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

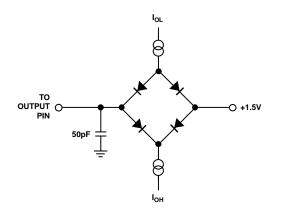


Figure 22. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

ADSP-2103/2162/2164-SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

		K Gr	ade	B G		
Parameter		Min	Max	Min	Max	Unit
$V_{ m DD} \ T_{ m AMB}$	Supply Voltage Ambient Operating Temperature	3.00 0	3.60 +70	3.00 -40	3.60 +85	V °C

See "Environmental Conditions" for information on thermal specifications.

ELECTRICAL CHARACTERISTICS

Param	eter	Test Conditions	Min	Max	Unit
V _{IH}	Hi-Level Input Voltage ^{1, 3}	$@V_{DD} = max$	2.0		V
V _{IL}	Lo-Level Input Voltage ^{1, 3}	$@V_{DD} = min$		0.4	V
V _{OH}	Hi-Level Output Voltage ^{2, 3, 6}	@ V_{DD} = min, I_{OH} = -0.5 mA ⁶	2.4		V
V _{OL}	Lo-Level Output Voltage ^{2, 3, 6}	@ $V_{DD} = min, I_{OL} = 2 mA^{6}$		0.4	V
I _{IH}	Hi-Level Input Current ¹	$@V_{DD} = max, V_{IN} = V_{DD} max$		10	μA
I _{IL}	Lo-Level Input Current ¹	@ V _{DD} = max, V _{IN} = 0 V		10	μA
I _{OZH}	Tristate Leakage Current ⁴	$@V_{DD} = max, V_{IN} = V_{DD} max^5$		10	μA
I _{OZL}	Tristate Leakage Current ⁴	@ $V_{DD} = max$, $V_{IN} = 0 V^5$		10	μA
CI	Input Pin Capacitance ^{1, 7, 8}	@ $V_{IN} = 2.5 \text{ V}, f_{IN} = 1.0 \text{ MHz}, T_{AMB} = 25^{\circ}\text{C}$		8	pF
Co	Output Pin Capacitance ^{4, 7, 8, 9}	@ V_{IN} = 2.5 V, f_{IN} = 1.0 MHz, T_{AMB} = 25°C		8	pF

NOTES

¹Input-only pins: CLKIN, <u>RESET</u>, <u>IRQ2</u>, <u>BR</u>, MMAP, DR1, DR0.
 ²Output pins: <u>BG</u>, <u>PMS</u>, <u>DMS</u>, <u>BMS</u>, <u>RD</u>, <u>WR</u>, A0–A13, CLKOUT, DT1, DT0.

³ Bidirectional pins: D0–D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0.
 ⁴ Tristatable pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT1, SCLK1, RSF1, TFS1, DT0, SCLK0, RFS0, TFS0.

 5 0 V on \overline{BR} , CLKIN Active (to force tristate condition).

 6 All ADSP-2103, ADSP-2162, and ADSP-2164 outputs are CMOS and will drive to V_{DD} and GND with no dc loads.

⁷ Guaranteed but not tested.

⁸ Applies to PLCC and PQFP package types.

⁹Output pin capacitance is the capacitive load for any three-stated output pin.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage
Input Voltage
Output Voltage Swing $\dots -0.3$ V to V _{DD} + 0.3 V
Operating Temperature Range (Ambient)40°C to +85°C
Storage Temperature Range65°C to +150°C
Lead Temperature (5 sec) PLCC, PQFP +280°C

*Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ADSP-21xx SPECIFICATIONS (ADSP-2103/2162/2164)

TEST CONDITIONS

Figure 26 shows voltage reference levels for ac measurements.

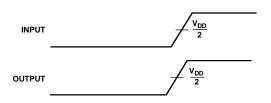


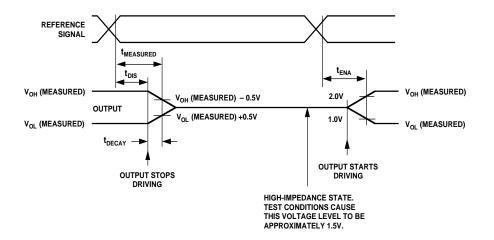
Figure 26. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

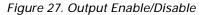
Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time (t_{DIS}) is the difference of $t_{MEASURED}$ and t_{DECAY} , as shown in Figure 27. The time $t_{MEASURED}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, t_{DECAY} , is dependent on the capacitative load, C_L , and the current load, i_L , on the output pin. It can be approximated by the following equation:

$$t_{DECAY} = \frac{C_L \times 0.5 V}{i_L}$$


from which


$t_{DIS} = t_{MEASURED} - t_{DECAY}$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time (t_{ENA}) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 27. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

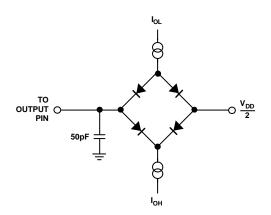


Figure 28. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163) serial ports

		12.5 MHz		13.0 MHz		13.824 MHz*		ncy ency	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Timing Requirement:									
t _{SCK} SCLK Period	80		76.9		72.3				ns
t _{SCS} DR/TFS/RFS Setup before SCLK Low	8		8		8				ns
SCH DR/TFS/RFS Hold after SCLK Low	10		10		10				ns
SCP SCLK _{IN} Width	30		28		28				ns
Switching Characteristic:									
CC CLKOUT High to SCLK _{OUT}	20	35	19.2	34.2	18.1	33.1	0.25t _{CK}	$0.25t_{CK} + 15ns$;
SCDE SCLK High to DT Enable	0		0		0				ns
SCDV SCLK High to DT Valid		20		20		20			ns
RH TFS/RFS _{OUT} Hold after SCLK High	0		0		0				ns
TFS/RFS _{OUT} Delay from SCLK High		20		20		20			ns
SCDH DT Hold after SCLK High	0		0		0				ns
TTE TFS (Alt) to DT Enable	0		0		0				ns
TFS (Alt) to DT Valid		18		18		18			ns
SCDD SCLK High to DT Disable		25		25		25			ns
RFS (Multichannel, Frame Delay Zero) to DT Valid		20		20		20			ns

*Maximum serial port operating frequency is 13.824 MHz for all processor speed grades except the 12.5 MHz ADSP-2101 and 13.0 MHz ADSP-2111.

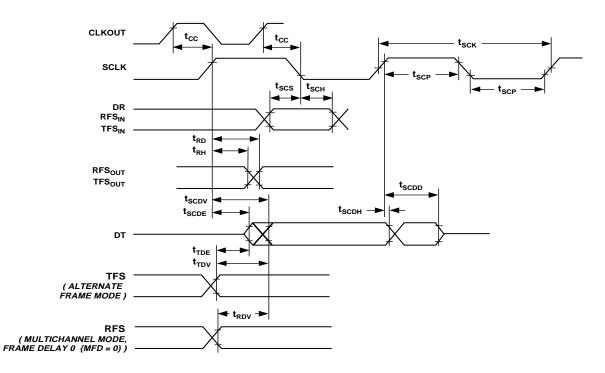


Figure 34. Serial Ports

TIMING PARAMETERS (ADSP-2111)

HOST INTERFACE PORT

Separate Data & Address (HMD1 = 0) Read Strobe & Write Strobe (HMD0 = 0)

Parameter	13.0 Min	MHz Max	16.67 Min	7 MHz Max	20 M Min		No Frequency Dependency	Unit
Timing Requirement:								
t _{HSU} HA2-0 Setup before Start of Write or Read ^{1, 2}	8		8		8			ns
t _{HDSU} Data Setup before End of Write ³	8		8		8			ns
t _{HWDH} Data Hold after End of Write ³	3		3		3			ns
$t_{\rm HH}$ HA2-0 Hold after End of Write or Read ^{3, 4}	3		3		3			ns
t _{HRWP} Read or Write Pulse Width ⁵	30		30		30			ns
Switching Characteristic:								
t _{HSHK} HACK Low after Start of Write or Read ^{1, 2}	0	20	0	20	0	20		ns
$t_{\rm HKH}$ HACK Hold after End of Write or Read ^{3, 4}	0	20	0	20	0	20		ns
t _{HDE} Data Enabled after Start of Read ²	0		0		0			ns
t _{HDD} Data Valid after Start of Read ²		23		23		23		ns
t _{HRDH} Data Hold after End of Read ⁴	0		0		0			ns
t _{HRDD} Data Disabled after End of Read ⁴		10		10		10		ns

NOTES ¹Start of Write = <u>HWR</u> Low and <u>HSEL</u> Low. ²Start of Read = <u>HRD</u> Low and <u>HSEL</u> Low. ³End of Write = <u>HWR</u> High or <u>HSEL</u> High. ⁴End of Read = <u>HRD</u> High or <u>HSEL</u> High. ⁵Read Pulse Width = <u>HRD</u> Low and <u>HSEL</u> Low, Write Pulse Width = <u>HWR</u> Low and <u>HSEL</u> Low.

TIMING PARAMETERS (ADSP-2111)

HOST INTERFACE PORT

Multiplexed Data & Address (HMD1 = 1) Read Strobe & Write Strobe (HMD0 = 0)

Parameter		MHz Max		' MHz Max	20 M Min	Hz Max	No Frequency Dependency	Unit
Timing Requirement:								
t _{HALP} ALE Pulse Width	15		15		15			ns
t _{HASU} HAD15-0 Address Setup before ALE Low	5		5		5			ns
t _{HAH} HAD15-0 Address Hold after ALE Low	2		2		2			ns
t _{HALS} Start of Write or Read after ALE Low ^{1, 2}	15		15		15			ns
t _{HDSU} HAD15-0 Data Setup before End of Write ³	8		8		8			ns
t _{HWDH} HAD15-0 Data Hold after End of Write ³	3		3		3			ns
t _{HRWP} Read or Write Pulse Width ⁵	30		30		30			ns
Switching Characteristic:								
t _{HSHK} HACK Low after Start of Write or Read ^{1, 2}	0	20	0	20	0	20		ns
t_{HKH} HACK Hold after End of Write or Read ^{3, 4}	0	20	0	20	0	20		ns
t _{HDE} HAD15-0 Data Enabled after Start of Read ²	0		0		0			ns
t _{HDD} HAD15-0 Data Valid after Start of Read ²		23		23		23		ns
t _{HRDH} HAD15-0 Data Hold after End of Read ⁴	0		0		0			ns
t _{HRDD} HAD15-0 Data Disabled after End of Read ⁴		10		10		10		ns

NOTES

NOTES ¹Start of Write = <u>HWR</u> Low and <u>HSEL</u> Low. ²Start of Read = <u>HRD</u> Low and <u>HSEL</u> Low. ³End of Write = <u>HWR</u> High or <u>HSEL</u> High. ⁴End of Read = <u>HRD</u> High or <u>HSEL</u> High. ⁵Read Pulse Width = <u>HRD</u> Low and <u>HSEL</u> Low, Write Pulse Width = <u>HWR</u> Low and <u>HSEL</u> Low.

TIMING PARAMETERS (ADSP-2111)

HOST INTERFACE PORT

Multiplexed Data & Address (HMD1 = 1) Read/Write Strobe & Data Strobe (HMD0 = 1)

Parameter		MHz Max	16.67 Min	' MHz Max	20 M Min	Hz Max	No Frequency Dependency	Unit
Timing Requirement:								
t _{HALP} ALE Pulse Width	15		15		15			ns
t _{HASU} HAD15-0 Address Setup before ALE Low	5		5		5			ns
t _{HAH} HAD15-0 Address Hold after ALE Low	2		2		2			ns
t _{HALS} Start of Write or Read after ALE Low ¹	15		15		15			ns
t _{HSU} HRW Setup before Start of Write or Read ¹	8		8		8			ns
t _{HDSU} HAD15-0 Data Setup before End of Write ²	5		5		5			ns
t _{HWDH} HAD15-0 Data Hold after End of Write ²	3		3		3			ns
$t_{\rm HH}$ HRW Hold after End of Write or Read ²	3		3		3			ns
t _{HRWP} Read or Write Pulse Width ³	30		30		30			ns
Switching Characteristic:								
t _{HSHK} HACK Low after Start of Write or Read ¹	0	20	0	20	0	20		ns
$t_{\rm HKH}$ HACK Hold after End of Write or Read ²	0	20	0	20	0	20		ns
t _{HDE} HAD15-0 Data Enabled after Start of Read ¹	0		0		0			ns
t _{HDD} HAD15-0 Data Valid after Start of Read ¹		23		23		23		ns
$t_{\rm HRDH}$ HAD15-0 Data Hold after End of Read ²	0		0		0			ns
t _{HRDD} HAD15-0 Data Disabled after End of Read ²		10		10		10		ns

NOTES

¹Start of Write or Read = \overline{HDS} Low and \overline{HSEL} Low. ²End of Write or Read = \overline{HDS} High or \overline{HSEL} High. ³Read or Write Pulse Width = \overline{HDS} Low and \overline{HSEL} Low.

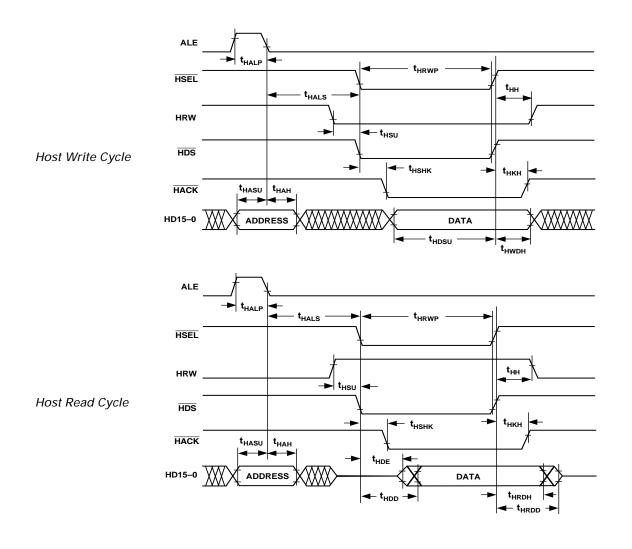


Figure 38. Host Interface Port (HMD1 = 1, HMD0 = 1)

TIMING PARAMETERS (ADSP-2103/2162/2164)

GENERAL NOTES

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

TIMING NOTES

Switching characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

MEMORY REQUIREMENTS

The table below shows common memory device specifications and the corresponding ADSP-21xx timing parameters, for your convenience.

Memory Specification	ADSP-21xx Timing Parameter	Timing Parameter Definition
Address Setup to Write Start Address Setup to Write End Address Hold Time Data Setup Time Data Hold Time OE to Data Valid Address Access Time	t _{ASW} t _{AW} t _{WRA} t _{DW} t _{DH} t _{RDD}	A0–A13, <u>DMS</u> , <u>PMS</u> Setup before <u>WR</u> Low A0–A13, <u>DMS</u> , <u>PMS</u> Setup before <u>WR</u> Deasserted A0–A13, <u>DMS</u> , <u>PMS</u> Hold after <u>WR</u> Deasserted Data Setup before <u>WR</u> High Data Hold after <u>WR</u> High <u>RD</u> Low to Data Valid A0–A13, <u>DMS</u> , <u>PMS</u> , <u>BMS</u> to Data Valid

TIMING PARAMETERS (ADSP-2103/2162/2164)

INTERRUPTS & FLAGS

Parameter	10.24 MHz Min Max	Frequency Dependency Min Max	Unit
Timing Requirement:			
t_{IFS} \overline{IRQx}^1 or FI Setup before CLKO t_{IFH} \overline{IRQx}^1 or FI Hold after CLKOU	UT Low ^{2, 3} 44.4	$0.25t_{CK} + 20$	ns
t_{IFH} IRQx ¹ or FI Hold after CLKOUT	² High ^{2, 3} 24.4	0.25t _{CK}	ns
Switching Characteristic:			
t _{FOH} FO Hold after CLKOUT High	0		ns
t _{FOD} FO Delay from CLKOUT High	15		ns

NOTES

 $^{1}\overline{IRQx}$ = $\overline{IRQ0}$, $\overline{IRQ1}$, and $\overline{IRQ2}$.

²¹ fTRQx and FI inputs meet t_{IFS} and t_{IFH} setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the following cycle. (Refer to the "Interrupt Controller" section in Chapter 3, Program Control, of the *ADSP-2100 Family User's Manual* for further information on interrupt servicing.)

³Edge-sensitive interrupts require pulse widths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.

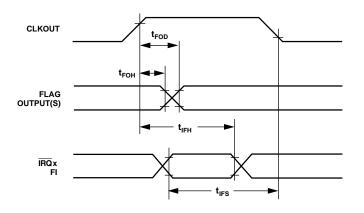


Figure 40. Interrupts & Flags

TIMING PARAMETERS (ADSP-2103/2162/2164) bus request/grant

Parameter	10.2 Mir	4 MHz Max	Frequency Dependency Min	Max	Unit
Timing Requirement:					
t_{BH} \overline{BR} Hold after CLKOUT High ¹	29.4	4	0.25t _{CK} + 5		ns
t_{BS} BR Setup before CLKOUT Low ¹	44.4		$0.25t_{CK} + 20$		ns
Switching Characteristic:					
t_{SD} CLKOUT High to \overline{DMS} , \overline{PMS} , \overline{E}	$\overline{\text{MS}}, \overline{\text{RD}}, \overline{\text{WR}}$ Disable	44.4		$0.25t_{CK} + 20$	ns
t_{SDB} \overline{DMS} , \overline{PMS} , \overline{BMS} , \overline{RD} , \overline{WR} Disa	ible to \overline{BG} Low 0				ns
t_{SE} \overline{BG} High to \overline{DMS} , \overline{PMS} , \overline{BMS} , \overline{R}	$\overline{D}, \overline{WR}$ Enable 0				ns
t_{SEC} \overline{DMS} , \overline{PMS} , \overline{BMS} , \overline{RD} , \overline{WR} Ena	ble to CLKOUT High 14.4	:	0.25t _{CK} - 10		ns

NOTES

 1 If \overline{BR} meets the t_{BS} and t_{BH} setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. \overline{BR} requires a pulse width greater than 10 ns.

Section 10.2.4, "Bus Request/Grant," of the ADSP-2100 Family User's Manual (1st Edition, ©1993) states that "When \overline{BR} is recognized, the processor responds immediately by asserting \overline{BG} during the same cycle." This is incorrect for the current versions of all ADSP-21xx processors: \overline{BG} is asserted in the cycle after \overline{BR} is recognized. No external synchronization circuit is needed when \overline{BR} is generated as an asynchronous signal.

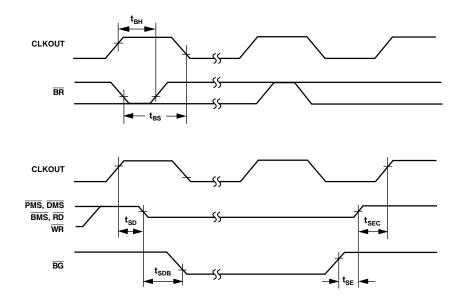
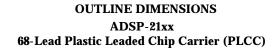
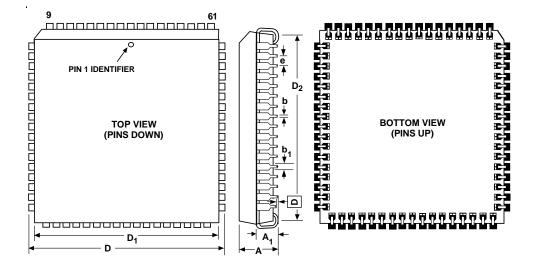
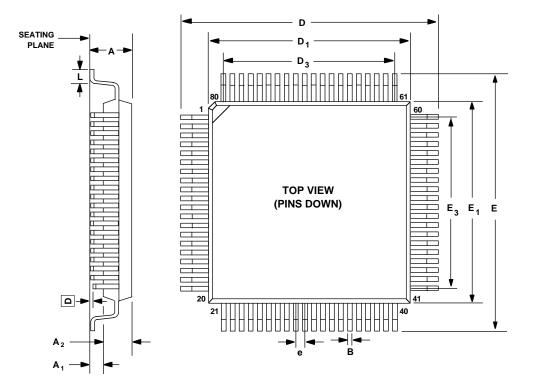
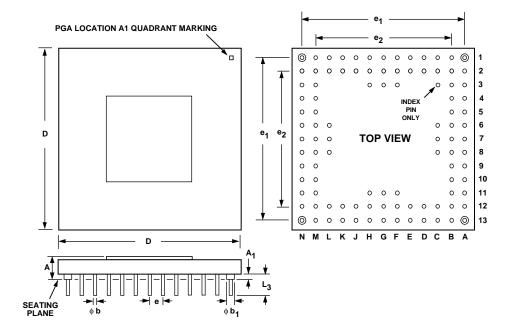




Figure 41. Bus Request/Grant



	l II	VCHES		MILLIMETERS					
SYMBOL	MIN	ТҮР	MAX	MIN	ТҮР	MAX			
А	0.169	0.172	0.175	4.29	4.37	4.45			
A ₁		0.104			2.64				
b	0.017	0.018	0.019	0.43	0.46	0.48			
b ₁	0.027	0.028	0.029	0.69	0.71	0.74			
D	0.985	0.990	0.995	25.02	25.15	25.27			
D ₁	0.950	0.952	0.954	24.13	24.18	24.23			
D ₂	0.895	0.910	0.925	22.73	23.11	23.50			
е		0.050			1.27				
٥			0.004			0.10			

OUTLINE DIMENSIONS


PQFP

TQFP

	N	1ILLIME	TERS	INCHES]	MILLIMETERS			INCHES			
SYMBOL	MIN	ТҮР	MAX	MIN	ТҮР	MAX		MIN	ТҮР	MAX	MIN	ТҮР	MAX
А			2.45			0.096				1.60			0.063
A ₁	0.25			0.010				0.05		0.15	0.002		0.006
A ₂	1.90	2.00	2.10	0.075	0.079	0.083		1.35	1.40	1.45	0.053	0.055	0.057
D, E	16.95	17.20	17.45	0.667	0.678	0.690		15.75	16.00	16.25	0.620	0.630	0.640
D ₁ , E ₁	13.90	14.00	14.10	0.547	0.551	0.555		13.95	14.00	14.05	0.549	0.551	0.553
D ₃ , E ₃		12.35	12.43		0.486	0.490			12.35	12.43		0.486	0.490
L	0.65	0.80	0.95	0.026	0.031	0.037		0.50	0.60	0.75	0.020	0.024	0.030
е	0.57	0.65	0.73	0.023	0.026	0.029		0.57	0.65	0.73	0.022	0.026	0.029
В	0.22	0.30	0.38	0.009	0.012	0.015		0.25	0.30	0.35	0.010	0.012	0.014
۵			0.10			0.004				0.10			0.004

OUTLINE DIMENSIONS

ADSP-2111 100-Pin Grid Array (PGA)

	I	NCHES		MILLIMETERS				
SYMBOL	MIN	ТҮР	MAX	MIN	ТҮР	MAX		
А	0.123		0.169	3.12		4.29		
A ₁		0.050			1.27			
φb	0.016	0.018	0.020	0.41	0.46	0.51		
φ b 1		0.050			1.27			
D	1.308	1.32	1.342	33.22	33.53	34.09		
e ₁	1.188	1.20	1.212	30.18	30.48	30.78		
e ₂	0.988	1.00	1.012	25.10	25.4	25.70		
е		0.100			2.54			
L ₃		0.180			4.57			