

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Serial Port
Clock Rate	25MHz
Non-Volatile Memory	External
On-Chip RAM	3kB
Voltage - I/O	5.00V
Voltage - Core	5V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/rochester-electronics/adsp-2101bpz-100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flexible Framing—The SPORTs have independent framing for the transmit and receive functions; each function can run in a frameless mode or with frame synchronization signals internally generated or externally generated; frame sync signals may be active high or inverted, with either of two pulse widths and timings.

Different Word Lengths—Each SPORT supports serial data word lengths from 3 to 16 bits.

Companding in Hardware—Each SPORT provides optional A-law and μ -law companding according to CCITT recommendation G.711.

Flexible Interrupt Scheme—Receive and transmit functions can generate a unique interrupt upon completion of a data word transfer.

Autobuffering with Single-Cycle Overhead—Each SPORT can automatically receive or transmit the contents of an entire circular data buffer with only one overhead cycle per data word; an interrupt is generated after the transfer of the entire buffer is completed.

Multichannel Capability (SPORT0 Only)—SPORT0 provides a multichannel interface to selectively receive or transmit a 24-word or 32-word, time-division multiplexed serial bit stream; this feature is especially useful for T1 or CEPT interfaces, or as a network communication scheme for multiple processors. (Note that the ADSP-2105 includes only SPORT1, not SPORT0, and thus does not offer multichannel operation.)

Alternate Configuration—SPORT1 can be alternatively configured as two external interrupt inputs ($\overline{IRQ0}$, $\overline{IRQ1}$) and the Flag In and Flag Out signals (FI, FO).

Host Interface Port (ADSP-2111)

The ADSP-2111 includes a Host Interface Port (HIP), a parallel I/O port that allows easy connection to a host processor. Through the HIP, the ADSP-2111 can be accessed by the host processor as a memory-mapped peripheral. The host interface port can be thought of as an area of dual-ported memory, or mailbox registers, that allows communication between the computational core of the ADSP-2111 and the host computer. The host interface port is completely asynchronous. The host processor can write data into the HIP while the ADSP-2111 is operating at full speed.

Three pins configure the HIP for operation with different types of host processors. The HSIZE pin configures HIP for 8- or 16bit communication with the host processor. HMD0 configures the bus strobes, selecting either separate read and write strobes or a single read/write select and a host data strobe. HMD1 selects either separate address (3-bit) and data (16-bit) buses or a multiplexed 16-bit address/data bus with address latch enable. Tying these pins to appropriate values configures the ADSP-2111 for straight-wire interface to a variety of industry-standard microprocessors and microcomputers.

The HIP contains six data registers (HDR5-0) and two status registers (HSR7-6) with an associated HMASK register for masking interrupts from individual HIP data registers. The HIP data registers are memory-mapped in the internal data memory

of the ADSP-2111. The two status registers provide status information to both the ADSP-2111 and the host processor. HSR7 contains a software reset bit which can be set by both the ADSP-2111 and the host.

HIP transfers can be managed using either interrupts or polling. The HIP generates an interrupt whenever an HDR register receives data from a host processor write. It also generates an interrupt when the host processor has performed a successful read of any HDR. The read/write status of the HDRs is also stored in the HSR registers.

The HMASK register bits can be used to mask the generation of read or write interrupts from individual HDR registers. Bits in the IMASK register enable and disable all HIP read interrupts or all HIP write interrupts. So, for example, a write to HDR4 will cause an interrupt only if both the *HDR4 Write* bit in HMASK and the *HIP Write* interrupt enable bit in IMASK are set.

The HIP provides a second method of booting the ADSP-2111 in which the host processor loads instructions into the HIP. The ADSP-2111 automatically transfers the data, in this case opcodes, to internal program memory. The BMODE pin determines whether the ADSP-2111 boots from the host processor through the HIP or from external EPROM over the data bus.

Interrupts

The ADSP-21xx's interrupt controller lets the processor respond to interrupts with a minimum of overhead. Up to three external interrupt input pins, $\overline{IRQ0}$, $\overline{IRQ1}$, and $\overline{IRQ2}$, are provided. $\overline{IRQ2}$ is always available as a dedicated pin; $\overline{IRQ1}$ and $\overline{IRQ0}$ may be alternately configured as part of Serial Port 1. The ADSP-21xx also supports internal interrupts from the timer, the serial ports, and the host interface port (on the ADSP-2111). The interrupts are internally prioritized and individually maskable (except for RESET which is non-maskable). The \overline{IRQx} input pins can be programmed for either level- or edge-sensitivity. The interrupt priorities for each ADSP-21xx processor are shown in Table III.

The ADSP-21xx uses a vectored interrupt scheme: when an interrupt is acknowledged, the processor shifts program control to the interrupt vector address corresponding to the interrupt received. Interrupts can be optionally nested so that a higher priority interrupt can preempt the currently executing interrupt service routine. Each interrupt vector location is four instructions in length so that simple service routines can be coded entirely in this space. Longer service routines require an additional JUMP or CALL instruction.

Individual interrupt requests are logically ANDed with the bits in the IMASK register; the highest-priority unmasked interrupt is then selected.

The interrupt control register, ICNTL, allows the external interrupts to be set as either edge- or level-sensitive. Depending on bit 4 in ICNTL, interrupt service routines can either be nested (with higher priority interrupts taking precedence) or be processed sequentially (with only one interrupt service active at a time).

THE TWO $\,$ MSBs of the data BUS (D_{23-22}) are used to supply the two MSBs of the boot memory eprom address. This is only required for the 27256 and 27512.

THE TWO MSBs OF THE DATA BUS (D $_{23-22}$) ARE USED TO SUPPLY THE TWO MSBs OF THE BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.

Figure 4. ADSP-2105 System

ADSP-2101/ADSP-2103/ADSP-2111

When MMAP = 0, on-chip program memory RAM occupies 2K words beginning at address 0x0000. Off-chip program memory uses the remaining 14K words beginning at address 0x0800. In this configuration-when MMAP = 0-the boot loading sequence (described below in "Boot Memory Interface") is automatically initiated when \overline{RESET} is released.

When MMAP = 1, 14K words of off-chip program memory begin at address 0x0000 and on-chip program memory RAM is located in the upper 2K words, beginning at address 0x3800. In this configuration, program memory is not booted although it can be written to and read under program control.

Figure 6. ADSP-2101/ADSP-2103/ADSP-2111 Program Memory Maps

Figure 7. ADSP-2161/62 Program Memory Maps

ADSP-2105/ADSP-2115

When MMAP = 0, on-chip program memory RAM occupies 1K words beginning at address 0x0000. Off-chip program memory uses the remaining 14K words beginning at address 0x0800. In this configuration-when MMAP = 0-the boot loading sequence (described below in "Boot Memory Interface") is automatically initiated when RESET is released.

When MMAP = 1, 14K words of off-chip program memory begin at address 0x0000 and on-chip program memory RAM is located in the 1K words between addresses 0x3800–0x3BFF. In this configuration, program memory is not booted although it can be written to and read under program control.

Figure 8. ADSP-2105/ADSP-2115 Program Memory Maps

ADSP-2101/2105/2115/2161/2163-SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	K G Min	rade Max	B G Min	rade Max	T Gi Min	rade Max	Unit
V _{DD} Supply Voltage T _{AMB} Ambient Operating Temperature	4.50	5.50	4.50	5.50	4.50	5.50	V
	0	+70	-40	+85	-55	+125	°C

See "Environmental Conditions" for information on thermal specifications.

ELECTRICAL CHARACTERISTICS

Parameter		Test Conditions	Min	Max	Unit
VIH	Hi-Level Input Voltage ^{3, 5}	$@ V_{DD} = max$	2.0		V
V _{IH}	Hi-Level CLKIN Voltage	$@V_{DD} = max$	2.2		V
V _{IL}	Lo-Level Input Voltage ^{I, 3}	$@V_{DD} = min$		0.8	V
V _{OH}	Hi-Level Output Voltage ^{2, 3, 7}	@ $V_{DD} = min$, $I_{OH} = -0.5 mA$	2.4		V
		@ $V_{DD} = min$, $I_{OH} = -100 \ \mu A^8$	V _{DD} - 0.3		V
Vol	Lo-Level Output Voltage ^{2, 3, 7}	@ V _{DD} = min, I _{OL} = 2 mA		0.4	V
I_{IH}	Hi-Level Input Current ¹	@ V _{DD} = max, V _{IN} = V _{DD} max		10	μA
I _{IL}	Lo-Level Input Current ¹	@ V _{DD} = max, V _{IN} = 0 V		10	μA
I _{OZH}	Tristate Leakage Current ⁴	@ V _{DD} = max, V _{IN} = V _{DD} max ⁶		10	μA
I _{OZL}	Tristate Leakage Current ⁴	@ $V_{DD} = max$, $V_{IN} = 0 V^6$		10	μA
CI	Input Pin Capacitance ^{1, 8, 9}	@ $V_{IN} = 2.5 \text{ V}, f_{IN} = 1.0 \text{ MHz}, T_{AMB} = 25^{\circ}\text{C}$		8	pF
Co	Output Pin Capacitance ^{4, 8, 9, 10}	@ $V_{IN} = 2.5 \text{ V}, f_{IN} = 1.0 \text{ MHz}, T_{AMB} = 25^{\circ}\text{C}$		8	pF

NOTES

¹Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0 (not on ADSP-2105).

²Output pins: BG, PMS, DMS, BMS, RD, WR, A0-A13, CLKOUT, DT1, DT0 (not on ADSP-2105).

³Bidirectional pins: D0-D23, SCLK1, RFS1, TFS1, SCLK0 (not on ADSP-2105), RFS0 (not on ADSP-2105), TFS0 (not on ADSP-2105).

⁴Tristatable pins: A0-A13, D0-D23, PMS, DMS, BMS, RD, WR, DT1, SCLK1, RSF1, TFS1, DT0 (not on ADSP-2105), SCLK0 (not on ADSP-2105), RFS0 (not on ADSP-2105), TFS0 (not on ADSP-2105).

⁵Input-only pins: RESET, IRQ2, BR, MMAP, DR1, DR0 (not on ADSP-2105).

 6 0 V on \overline{BR} , CLKIN Active (to force tristate condition).

⁷Although specified for TTL outputs, all ADSP-21xx outputs are CMOS-compatible and will drive to V_{DD} and GND, assuming no dc loads.

⁸Guaranteed but not tested.

⁹Applies to PGA, PLCC, PQFP package types.

¹⁰Output pin capacitance is the capacitive load for any three-stated output pin.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage	–0.3 V to +7 V
Input Voltage	-0.3 V to V_{DD} + 0.3 V
Output Voltage Swing	-0.3 V to V_{DD} + 0.3 V
Operating Temperature Range (Ambient)	–55°C to +125°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (10 sec) PGA	$\dots\dots\dots+300^oC$
Lead Temperature (5 sec) PLCC PQFP	TOFP +280°C

*Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-21xx processors feature proprietary ESD protection circuitry to dissipate high energy electrostatic discharges (Human Body Model), permanent damage may occur to devices subjected to such discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Unused devices must be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before the devices are removed. Per method 3015 of MIL-STD-883, the ADSP-21xx processors have been classified as Class 1 devices.

SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163) POWER DISSIPATION EXAMPLE

To determine total power dissipation in a specific application, the following equation should be applied for each output:

 $C \times V_{DD}^2 \times f$

C = load capacitance, f = output switching frequency.

Example:

In an ADSP-2101 application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:

Assumptions:

- External data memory is accessed every cycle with 50% of the address pins switching.
- External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at $V_{DD} = 5.0$ V and $t_{CK} = 50$ ns. Total Power Dissipation = $P_{INT} + (C \times V_{DD}^2 \times f)$

 P_{INT} = internal power dissipation (from Figure 11).

 $(C \times V_{DD}^2 \times f)$ is calculated for each output:

Output	# of Pins	×C	$ imes V_{DD}^2$	×f
Address, DMS Data, WR RD CLKOUT	8 9 1 1	× 10 pF × 10 pF × 10 pF × 10 pF	$\begin{array}{c} \times \ 5^2 \ V \\ \times \ 5^2 \ V \end{array}$	× 20 MHz = 40.0 mW × 10 MHz = 22.5 mW × 10 MHz = 2.5 mW × 20 MHz = 5.0 mW
				70.0 mW

Total power dissipation for this example = P_{INT} + 70.0 mW.

ENVIRONMENTAL CONDITIONS

Ambient Temperature Rating:

$$\begin{split} T_{AMB} &= T_{CASE} - (PD \times \theta_{CA}) \\ T_{CASE} &= Case \ Temperature \ in \ ^{\circ}C \end{split}$$

```
PD = Power Dissipation in W
```

 θ_{CA} = Thermal Resistance (Case-to-Ambient)

 θ_{JA} = Thermal Resistance (Junction-to-Ambient)

 θ_{JC} = Thermal Resistance (Junction-to-Case)

Package	θ _{JA}	θ _{JC}	θ_{CA}
PGA	18°C/W	9°C/W	9°C/W
PLCC	27°C/W	16°C/W	11°C/W
PQFP	60°C/W	18°C/W	42°C/W
TQFP	60°C/W	18°C/W	42°C/W

CAPACITIVE LOADING

Figures 12 and 13 show capacitive loading characteristics for the ADSP-2101, ADSP-2105, ADSP-2115, and ADSP-2161/2163.

Figure 12. Typical Output Rise Time vs. Load Capacitance, C₁ (at Maximum Ambient Operating Temperature)

Figure 13. Typical Output Valid Delay or Hold vs. Load Capacitance, C_L (at Maximum Ambient Operating Temperature)

SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)

TEST CONDITIONS

Figure 14 shows voltage reference levels for ac measurements.

Figure 14. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time (t_{DIS}) is the difference of $t_{MEASURED}$ and t_{DECAY} , as shown in Figure 15. The time $t_{MEASURED}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, t_{DECAY} , is dependent on the capacitative load, C_L , and the current load, i_L , on the output pin. It can be approximated by the following equation:

$$t_{DECAY} = \frac{C_L \times 0.5 V}{i_L}$$

from which

$$t_{DIS} = t_{MEASURED} - t_{DECAY}$$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time (t_{ENA}) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 15. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Figure 16. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163) MEMORY WRITE

Paran	neter	13 M Min	Hz Max	13.82 Min	4 MHz Max	16.67 Min	MHz Max	20 MI Min	Hz Max	25 MI Min	Hz Max	Unit
Switch	ing Characteristic:											
t _{DW}	Data Setup before WR High	25.5		23.2		17		12		7		ns
t _{DH}	Data Hold after \overline{WR} High	9.2		8.1		5		2.5		0		ns
t _{WP}	WR Pulse Width	30.5		28.2		22		17		12		ns
t _{WDE}	WR Low to Data Enabled	0		0		0		0		0		ns
t _{ASW}	A0-A13, DMS, PMS Setup before	9.2		8.1		5		2.5		1.5^{1}		ns
	WR Low											
t _{DDR}	Data Disable before \overline{WR} or \overline{RD} Low	9.2		8.1		5		2.5		1.5^{1}		ns
t _{CWR}	CLKOUT High to \overline{WR} Low	14.2	29.2	13.1	28.1	10	25	7.5	22.5	5	20	ns
t _{AW}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$, Setup before $\overline{\text{WR}}$	35.7		32.2		23		15.5		8		ns
	Deasserted											
t _{WRA}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$ Hold after $\overline{\text{WR}}$	10.2		9.1		6		3.5		1		ns
	Deasserted											
t _{WWR}	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	33.5		31.2		25		20		15		ns

		Frequency Depe (CLKIN ≤ 25 MF		
Para	meter	Min	Max	Unit
Switc	hing Characteristic:			
t _{DW}	Data Setup before WR High	$0.5t_{CK} - 13 + w$		ns
t _{DH}	Data Hold after WR High	$0.25t_{CK} - 10$		ns
t _{WP}	WR Pulse Width	$0.5t_{CK} - 8 + w$		ns
t _{WDE}	WR Low to Data Enabled	0		
t _{ASW}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$ Setup before $\overline{\text{WR}}$ Low	$0.25t_{CK} - 10^{1}$		ns
t _{DDR}	Data Disable before \overline{WR} or \overline{RD} Low	$0.25t_{CK} - 10^1$		ns
t _{CWR}	CLKOUT High to $\overline{\mathrm{WR}}$ Low	$0.25t_{CK} - 5$	$0.25t_{CK} + 10$	ns
t _{AW}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$, Setup before $\overline{\text{WR}}$			
	Deasserted	$0.75t_{CK} - 22 + w$		ns
t _{WRA}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$ Hold after $\overline{\text{WR}}$			
	Deasserted	$0.25t_{CK} - 9$		ns
t _{WWR}	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	$0.5t_{CK} - 5$		ns

NOTES $^1For~25$ MHz only the minimum frequency dependency formula for t_{ASW} and t_{DDR} = (0.25t_{CK} – 8.5).

Figure 33. Memory Write

Figure 36. Host Interface Port (HMD1 = 0, HMD0 = 1)

TIMING PARAMETERS (ADSP-2111)

HOST INTERFACE PORT

Multiplexed Data & Address (HMD1 = 1) Read Strobe & Write Strobe (HMD0 = 0)

Parameter	13.0 Min	MHz Max	16.67 Min	MHz Max	20 M Min	Hz Max	No Frequency Dependency	Unit
Timing Requirement:								
t _{HALP} ALE Pulse Width	15		15		15			ns
t _{HASU} HAD15-0 Address Setup before ALE Low	5		5		5			ns
t _{HAH} HAD15-0 Address Hold after ALE Low	2		2		2			ns
t _{HALS} Start of Write or Read after ALE Low ^{1, 2}	15		15		15			ns
t _{HDSU} HAD15-0 Data Setup before End of Write ³	8		8		8			ns
t _{HWDH} HAD15-0 Data Hold after End of Write ³	3		3		3			ns
t _{HRWP} Read or Write Pulse Width ⁵	30		30		30			ns
Switching Characteristic:								
t _{HSHK} HACK Low after Start of Write or Read ^{1, 2}	0	20	0	20	0	20		ns
t_{HKH} HACK Hold after End of Write or Read ^{3, 4}	0	20	0	20	0	20		ns
t _{HDE} HAD15-0 Data Enabled after Start of Read ²	0		0		0			ns
t _{HDD} HAD15-0 Data Valid after Start of Read ²		23		23		23		ns
t _{HRDH} HAD15-0 Data Hold after End of Read ⁴	0		0		0			ns
t _{HRDD} HAD15-0 Data Disabled after End of Read ⁴		10		10		10		ns

NOTES

NOTES ¹Start of Write = <u>HWR</u> Low and <u>HSEL</u> Low. ²Start of Read = <u>HRD</u> Low and <u>HSEL</u> Low. ³End of Write = <u>HWR</u> High or <u>HSEL</u> High. ⁴End of Read = <u>HRD</u> High or <u>HSEL</u> High. ⁵Read Pulse Width = <u>HRD</u> Low and <u>HSEL</u> Low, Write Pulse Width = <u>HWR</u> Low and <u>HSEL</u> Low.

Figure 37. Host Interface Port (HMD1 = 1, HMD0 = 0)

TIMING PARAMETERS (ADSP-2103/2162/2164) CLOCK SIGNALS & RESET

Param	eter	10.24 N Min	/Hz Max	Frequenc Depender Min	y ncy Max	Unit
Timing	Requirement:					
t _{CK}	CLKIN Period	97.6	150			ns
t _{CKL}	CLKIN Width Low	20				ns
t _{CKH}	CLKIN Width High	20				ns
t _{RSP}	RESET Width Low	488		$5t_{CK}^{1}$		ns
Switchi	ng Characteristic:			-		
t _{CPL}	CLKOUT Width Low	38.8		0.5t _{CK} – 1	0	ns
t _{CPH}	CLKOUT Width High	38.8		0.5t _{CK} – 1	0	ns
t _{CKOH}	CLKIN High to CLKOUT High	0	20			ns

NOTES

¹Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal oscillator startup time).

Figure 39. Clock Signals

TIMING PARAMETERS (ADSP-2103/2162/2164)

INTERRUPTS & FLAGS

Param	neter	10.24 MHz Min Max	Frequency Dependency Min Max	Unit
Timing	Requirement:			
t _{IFS}	IRQx ¹ or FI Setup before CLKOUT Low ^{2, 3}	44.4	$0.25t_{CK} + 20$	ns
t _{IFH}	IRQx ¹ or FI Hold after CLKOUT High ^{2, 3}	24.4	$0.25t_{CK}$	ns
Switchi	ing Characteristic:			
t _{FOH}	FO Hold after CLKOUT High	0		ns
t _{FOD}	FO Delay from CLKOUT High	15		ns

NOTES

 $^{1}\overline{IRQx}$ = $\overline{IRQ0}$, $\overline{IRQ1}$, and $\overline{IRQ2}$.

²If IRQs and FI inputs meet t_{IFS} and t_{IFH} setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the following cycle. (Refer to the "Interrupt Controller" section in Chapter 3, Program Control, of the *ADSP-2100 Family User's Manual* for further information on interrupt servicing.)

³Edge-sensitive interrupts require pulse widths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.

Figure 40. Interrupts & Flags

TIMING PARAMETERS (ADSP-2103/2162/2164) bus request/grant

Param	eter	10.24 M Min	MHz Max	Frequency Dependency Min	Max	Unit
Timing	Requirement:					
t _{BH}	BR Hold after CLKOUT High ¹	29.4		0.25t _{CK} + 5		ns
t _{BS}	BR Setup before CLKOUT Low ¹	44.4		$0.25t_{CK} + 20$		ns
Switchin	ng Characteristic:					
t _{SD}	CLKOUT High to DMS, PMS, BMS, RD, WR Disable		44.4		$0.25t_{CK} + 20$	ns
t _{SDB}	$\overline{\text{DMS}}$, $\overline{\text{PMS}}$, $\overline{\text{BMS}}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$ Disable to $\overline{\text{BG}}$ Low	0				ns
t _{SE}	$\overline{\text{BG}}$ High to $\overline{\text{DMS}}$, $\overline{\text{PMS}}$, $\overline{\text{BMS}}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$ Enable	0				ns
t _{SEC}	$\overline{\text{DMS}}, \overline{\text{PMS}}, \overline{\text{BMS}}, \overline{\text{RD}}, \overline{\text{WR}}$ Enable to CLKOUT High	14.4		$0.25t_{CK} - 10$		ns

NOTES

 1 If \overline{BR} meets the t_{BS} and t_{BH} setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. \overline{BR} requires a pulse width greater than 10 ns.

Section 10.2.4, "Bus Request/Grant," of the ADSP-2100 Family User's Manual (1st Edition, ©1993) states that "When \overline{BR} is recognized, the processor responds immediately by asserting \overline{BG} during the same cycle." This is incorrect for the current versions of all ADSP-21xx processors: \overline{BG} is asserted in the cycle after \overline{BR} is recognized. No external synchronization circuit is needed when \overline{BR} is generated as an asynchronous signal.

Figure 41. Bus Request/Grant

TIMING PARAMETERS (ADSP-2103/2162/2164) memory write

Parameter		10.24 Min	MHz Max	Frequency Dependency Min	Max	Unit
Switchi	ing Characteristic:					
t _{DW}	Data Setup before WR High	38.8		$0.5t_{CK} - 10 + w$		ns
t _{DH}	Data Hold after $\overline{\mathrm{WR}}$ High	14.4		0.25t _{CK} -10		ns
t _{WP}	WR Pulse Width	43.8		$0.5t_{CK} - 5 + w$		ns
t _{WDE}	WR Low to Data Enabled	0				
t _{ASW}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$ Setup before $\overline{\text{WR}}$ Low	12.4		0.25t _{CK} -12		ns
t _{DDR}	Data Disable before \overline{WR} or \overline{RD} Low	14.4		0.25t _{CK} - 10		ns
t _{CWR}	CLKOUT High to \overline{WR} Low	19.4	34.4	0.25t _{CK} - 5	$0.25t_{CK} + 10$	ns
t _{AW}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$, Setup before $\overline{\text{WR}}$ Deasserted	58.2		$0.75t_{CK} - 15 + w$,	ns
t _{WRA}	A0–A13, DMS, PMS Hold After WR Deasserted	14.4		0.25t _{CK} -10		ns
t _{WWR}	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	38.8		0.5t _{CK} – 10		ns

w = wait states \times t_{CK.}

Figure 43. Memory Write

TIMING PARAMETERS (ADSP-2103/2162/2164) serial ports

		10.24 N	1Hz	Frequenc Depender	y ncy	
Parameter		Min	Max	Min	Max	Unit
Timing	Requirement:					
t _{SCK}	SCLK Period	97.6		t _{CK}		ns
t _{SCS}	DR/TFS/RFS Setup before SCLK Low	8				ns
t _{SCH}	DR/TFS/RFS Hold after SCLK Low	10				ns
t _{SCP}	SCLK _{in} Width	28				ns
Switchi	ng Characteristic:					
t _{CC}	CLKOUT High to SCLK _{out}	24.4	39.4	0.25t _{CK}	$0.25t_{CK} + 15$	ns
t _{SCDE}	SCLK High to DT Enable	0				ns
t _{SCDV}	SCLK High to DT Valid		28			ns
t _{RH}	TFS/RFS _{out} Hold after SCLK High	0				ns
t _{RD}	TFS/RFS _{out} Delay from SCLK High		28			ns
t _{SCDH}	DT Hold after SCLK High	0				ns
t _{TDE}	TFS (alt) to DT Enable	0				ns
t _{TDV}	TFS (alt) to DT Valid		18			ns
t _{SCDD}	SCLK High to DT Disable		30			ns
t _{RDV}	RFS (Multichannel, Frame Delay Zero)		20			ns
	to DT Valid					

Figure 44. Serial Ports

80-Lead PQFP 80-Lead TQFP

PQFP/ TQFP Number	Pin Name	PQFP/ TQFP Number	Pin Name	PQFP/ TQFP Number	Pin Name	PQFP/ TQFP Number	Pin Name
1	A5	21	CLKOUT	41	NC	61	GND
2	A6	22	WR	42	NC	62	GND
3	GND	23	RD	43	NC	63	D19
4	GND	24	DT0	44	D4	64	D20
5	A7	25	TFS0	45	D5	65	D21
6	A8	26	RFS0	46	D6	66	D22
7	A9	27	GND	47	D7	67	D23
8	A10	28	GND	48	D8	68	V _{DD}
9	A11	29	DR0	49	D9	69	V _{DD}
10	A12	30	SCLK0	50	D10	70	MMAP
11	A13	31	FO <i>(DT1)</i>	51	D11	71	BR
12	PMS	32	IRQ1 (TFS1)	52	GND	72	IRQ2
13	DMS	33	IRQ0 (RFS1)	53	GND	73	RESET
14	BMS	34	FI <i>(DR1)</i>	54	D12	74	A0
15	BG	35	SCLK1	55	D13	75	A1
16	XTAL	36	V _{DD}	56	D14	76	A2
17	CLKIN	37	D0	57	D15	77	A3
18	NC	38	D1	58	D16	78	A4
19	NC	39	D2	59	D17	79	V _{DD}
20	NC	40	D3	60	D18	80	V _{DD}

PIN CONFIGURATIONS

100-Pin PGA

PGA Number	Pin Name	PGA Number	Pin Name
N13	D23	B13	A10
N12	D21	A13	V_{DD}
M13	MMAP	A12	A13
M12	GND	B12	A12
L13	BR	A11	HD14
L12	RESET	B11	HD15
K13	PMS	A10	HD12
K12	V _{DD}	B10	HD13
J13	BMS	A9	HD10
J12	DMS	B9	HD11
H13	BG	A8	GND
H12	WR	B8	HD8
H11	RD	C8	HD9
G13	A2	A7	HD6
G12	A0	B7	V_{DD}
G11	A1	C7	HD7
F13	A3	A6	HD5
F12	A4	B6	HD4
F11	A5	C6	XTAL
E13	GND	A5	CLKIN
E12	A6	B5	HD3
D13	A7	A4	HD2
D12	A8	B4	HD1
C13	A9	A3	HD0
C12	A11	B3	HA1

PGA	Pin		PGA	Pin
Number	Name		Number	Name
C3	Index (NC)		L2	FL2
A2	HA2/ALE		M1	FL1
A1	HA0		N1	VDD
B1	HWR/HDS		N2	DI
B2	HSEL		M2	D0
C1	HSIZE		N3	D3
C2	HRD/HRW		M3	D2
D1	HMD0		N4	D5
D2	HMD1		M4	D4
E1	IRQ2		N5	D7
E2	BMODE		M5	D6
F1	DT0		N6	D10
F2	CLKOUT		M6	D9
F3	HACK		L6	D8
G1	DR0		N7	D12
G2	TFS0		M7	D11
G3	RFS0		L7	GND
H1	SCLK0		N8	D13
H2	GND		M8	D14
H3	FO <i>(DT1)</i>		L8	D15
J1	IRQ1 (TFS1)		N9	D16
J2	IRQ0 (RFS1)		M9	D17
K1	FI <i>(DR1)</i>		N10	D18
K2	SCLK1		M10	D19
L1	FL0		N11	D20
	1	,	M11	D22

OUTLINE DIMENSIONS

ADSP-2111 100-Pin Grid Array (PGA)

	INCHES			MILLIMETERS		
SYMBOL	MIN	ТҮР	MAX	MIN	ТҮР	MAX
А	0.123		0.169	3.12		4.29
A ₁		0.050			1.27	
φb	0.016	0.018	0.020	0.41	0.46	0.51
$\phi \mathbf{b}_1$		0.050			1.27	
D	1.308	1.32	1.342	33.22	33.53	34.09
e ₁	1.188	1.20	1.212	30.18	30.48	30.78
e ₂	0.988	1.00	1.012	25.10	25.4	25.70
е		0.100			2.54	
L ₃		0.180			4.57	

ORDERING GUIDE

Part Number ¹	Ambient Temperature Range	Instruction Rate (MHz)	Package Description	Package Option
ADSP-2111KG-52	0°C to +70°C	13.0 MHz	100-Pin PGA	G-100A
ADSP-2111BG-52	-40°C to +85°C	13.0 MHz	100-Pin PGA	G-100A
ADSP-2111KS-52	0°C to +70°C	13.0 MHz	100-Lead PQFP	S-100A
ADSP-2111BS-52	-40°C to +85°C	13.0 MHz	100-Lead PQFP	S-100A
ADSP-2111KG-66	0°C to +70°C	16.67 MHz	100-Pin PGA	G-100A
ADSP-2111BG-66	-40°C to +85°C	16.67 MHz	100-Pin PGA	G-100A
ADSP-2111KS-66	0°C to +70°C	16.67 MHz	100-Lead PQFP	S-100A
ADSP-2111BS-66	-40°C to +85°C	16.67 MHz	100-Lead PQFP	S-100A
ADSP-2111KG-80	0°C to +70°C	20.0 MHz	100-Pin PGA	G-100A
ADSP-2111BG-80	-40°C to +85°C	20.0 MHz	100-Pin PGA	G-100A
ADSP-2111KS-80	0°C to +70°C	20.0 MHz	100-Lead PQFP	S-100A
ADSP-2111BS-80	-40°C to +85°C	20.0 MHz	100-Lead PQFP	S-100A
ADSP-2111TG-52	-55°C to +125°C	13.0 MHz	100-Pin PGA	G-100A
ADSP-2161KP-66 ²	0°C to +70°C	16.67 MHz	68-Lead PLCC	P-68A
ADSP-2161BP-66 ²	-40°C to +85°C	16.67 MHz	68-Lead PLCC	P-68A
ADSP-2161KS-66 ²	0°C to +70°C	16.67 MHz	80-Lead PQFP	S-80
ADSP-2161BS-66 ²	-40°C to +85°C	16.67 MHz	80-Lead PQFP	S-80
$\begin{array}{l} ADSP\text{-}2162KP\text{-}40 ~ (3.3 ~ V)^2 \\ ADSP\text{-}2162BP\text{-}40 ~ (3.3 ~ V)^2 \\ ADSP\text{-}2162KS\text{-}40 ~ (3.3 ~ V)^2 \\ ADSP\text{-}2162BS\text{-}40 ~ (3.3 ~ V)^2 \end{array}$	0°C to +70°C	10.24 MHz	68-Lead PLCC	P-68A
	-40°C to +85°C	10.24 MHz	68-Lead PLCC	P-68A
	0°C to +70°C	10.24 MHz	80-Lead PQFP	S-80
	-40°C to +85°C	10.24 MHz	80-Lead PQFP	S-80
ADSP-2163KP-66 ²	0°C to +70°C	16.67 MHz	68-Lead PLCC	P-68A
ADSP-2163BP-66 ²	-40°C to +85°C	16.67 MHz	68-Lead PLCC	P-68A
ADSP-2163KS-66 ²	0°C to +70°C	16.67 MHz	80-Lead PQFP	S-80
ADSP-2163BS-66 ²	-40°C to +85°C	16.67 MHz	80-Lead PQFP	S-80
ADSP-2163KP-100 ² ADSP-2163BP-100 ² ADSP-2163KS-100 ² ADSP-2163BS-100 ²	0°C to +70°C -40°C to +85°C 0°C to +70°C -40°C to +85°C	25 MHz 25 MHz 25 MHz 25 MHz 25 MHz	68-Lead PLCC 68-Lead PLCC 80-Lead PQFP 80-Lead PQFP	P-68A P-68A S-80 S-80
$\begin{array}{l} \text{ADSP-2164KP-40} & (3.3 \text{ V})^2 \\ \text{ADSP-2164BP-40} & (3.3 \text{ V})^2 \\ \text{ADSP-2164KS-40} & (3.3 \text{ V})^2 \\ \text{ADSP-2164BS-40} & (3.3 \text{ V})^2 \end{array}$	0°C to +70°C	10.24 MHz	68-Lead PLCC	P-68A
	-40°C to +85°C	10.24 MHz	68-Lead PLCC	P-68A
	0°C to +70°C	10.24 MHz	80-Lead PQFP	S-80
	-40°C to +85°C	10.24 MHz	80-Lead PQFP	S-80

NOTES ¹K = Commercial Temperature Range (0°C to +70°C). B = Industrial Temperature Range (-40°C to +85°C). T = Extended Temperature Range (-55°C to +125°C). G = Ceramic PGA (Pin Grid Array). P = PLCC (Plastic Leaded Chip Carrier). S = PQFP (Plastic Quad Flatpack). ²Minimum order quantities required. Contact factory for further information.

C1891b-10-2/96